Structural requirements for ligand binding by a probable plant vacuolar sorting receptor

被引:79
|
作者
Cao, XF
Rogers, SW
Butler, J
Beevers, L
Rogers, JC [1 ]
机构
[1] Washington State Univ, Inst Biol Chem, Pullman, WA 99164 USA
[2] Univ Oklahoma, Dept Bot & Microbiol, Norman, OK 73019 USA
来源
PLANT CELL | 2000年 / 12卷 / 04期
关键词
D O I
10.1105/tpc.12.4.493
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
How sorting receptors recognize amino acid determinants on polypeptide ligands and respond to pH changes for ligand binding or release is unknown. The plant vacuolar sorting receptor BP-80 binds polypeptide ligands with a central Asn-Pro-Ile-Arg (NPIR) motif, tBP-80, a soluble form of the receptor lacking transmembrane and cytoplasmic sequences, binds the peptide SSSFADSNPIRPVTDRAASTYC as a monomer with a specificity indistinguishable from that of BP-80. tap-so contains an N-terminal region homologous to ReMembR-H2 (RMR) protein lumenal domains, a unique central region, and three C-terminal epidermal growth factor (EGF) repeats. By protease digestion of purified secreted tBP-80, and from ligand binding studies with a secreted protein lacking the EGF repeats, we defined three protease-resistant structural domains: an N-terminal/RMR homology domain connected to a central domain, which together determine the NPIR-specific ligand binding site, and a C-terminal EGF repeat domain that alters the conformation of the other two domains to enhance ligand binding. A fragment representing the central domain plus the C-terminal domain could bind ligand but was not specific for NPIR, These results indicate that two tBP-80 binding sites recognize two separate ligand determinants: a non-NPIR site defined by the central domain-EGF repeat domain structure and an NPIR-specific site contributed by the interaction of the N-terminal/RMR homology domain and the central domain.
引用
收藏
页码:493 / 506
页数:14
相关论文
共 50 条
  • [1] Molecular cloning and further characterization of a probable plant vacuolar sorting receptor
    Paris, N
    Rogers, SW
    Jiang, LW
    Kirsch, T
    Beevers, L
    Phillips, TE
    Rogers, JC
    PLANT PHYSIOLOGY, 1997, 115 (01) : 29 - 39
  • [2] Purification, crystallization and preliminary crystallographic studies of the ligand-binding domain of a plant vacuolar sorting receptor
    Rogers, SW
    Youn, B
    Rogers, JC
    Kang, C
    ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2004, 60 : 2028 - 2030
  • [3] Molecular cloning of a plant vacuolar sorting receptor
    Paris, N
    Rogers, SW
    Jiang, L
    Kirsch, T
    Beevers, L
    Rogers, JC
    MOLECULAR BIOLOGY OF THE CELL, 1996, 7 : 1515 - 1515
  • [4] Structure-function study of the ligand-binding domain of an Arabidopsis Vacuolar Sorting Receptor
    Luo, Fang
    Shen, JinBo
    Jiang, LiWen
    Wong, KamBo
    PROTEIN SCIENCE, 2012, 21 : 226 - 226
  • [5] Plant RMR proteins: unique vacuolar sorting receptors that couple ligand sorting with membrane internalization
    Wang, Hao
    Rogers, John C.
    Jiang, Liwen
    FEBS JOURNAL, 2011, 278 (01) : 59 - 68
  • [6] The riddle of the plant vacuolar sorting receptors
    F. G. Masclaux
    J.-P. Galaud
    R. Pont-Lezica
    Protoplasma, 2005, 226 : 103 - 108
  • [7] The riddle of the plant vacuolar sorting receptors
    Masclaux, FG
    Galaud, JP
    Pont-Lezica, R
    PROTOPLASMA, 2005, 226 (3-4) : 103 - 108
  • [8] Different structural requirements of the ligand binding domain of the aryl hydrocarbon receptor for high- and low-affinity ligand binding and receptor activation
    Backlund, M
    Ingelman-Sundberg, M
    MOLECULAR PHARMACOLOGY, 2004, 65 (02) : 416 - 425
  • [9] Golgi to prevacuole-targeting mechanisms of a plant vacuolar sorting receptor.
    Jiang, LW
    Rogers, JC
    PLANT PHYSIOLOGY, 1997, 114 (03) : 266 - 266
  • [10] Trafficking of Vacuolar Proteins: The Crucial Role of Arabidopsis Vacuolar Protein Sorting 29 in Recycling Vacuolar Sorting Receptor
    Kang, Hyangju
    Kim, Soo Youn
    Song, Kyungyoung
    Sohn, Eun Ju
    Lee, Yongjik
    Lee, Dong Wook
    Hara-Nishimura, Ikuko
    Hwang, Inhwan
    PLANT CELL, 2012, 24 (12): : 5058 - 5073