A tunable topological insulator in the spin helical Dirac transport regime

被引:1680
|
作者
Hsieh, D. [1 ]
Xia, Y. [1 ]
Qian, D. [1 ,5 ]
Wray, L. [1 ]
Dil, J. H. [6 ,7 ]
Meier, F. [6 ,7 ]
Osterwalder, J. [7 ]
Patthey, L. [6 ]
Checkelsky, J. G. [1 ]
Ong, N. P. [1 ]
Fedorov, A. V. [8 ]
Lin, H. [9 ]
Bansil, A. [9 ]
Grauer, D. [2 ]
Hor, Y. S. [2 ]
Cava, R. J. [2 ]
Hasan, M. Z. [1 ,3 ,4 ]
机构
[1] Princeton Univ, Joseph Henry Labs Phys, Dept Phys, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA
[3] Princeton Univ, Princeton Ctr Complex Mat, Princeton, NJ 08544 USA
[4] Princeton Univ, Princeton Inst Sci & Technol Mat, Princeton, NJ 08544 USA
[5] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China
[6] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland
[7] Univ Zurich Irchel, Inst Phys, CH-8057 Zurich, Switzerland
[8] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA
[9] Northeastern Univ, Dept Phys, Boston, MA 02115 USA
基金
美国国家科学基金会;
关键词
ELECTRONIC-STRUCTURE; BI2TE3; CONE;
D O I
10.1038/nature08234
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Helical Dirac fermions-charge carriers that behave as massless relativistic particles with an intrinsic angular momentum (spin) locked to its translational momentum-are proposed to be the key to realizing fundamentally new phenomena in condensed matter physics(1-9). Prominent examples include the anomalous quantization of magneto-electric coupling(4-6), half-fermion states that are their own antiparticle(7,8), and charge fractionalization in a Bose-Einstein condensate(9), all of which are not possible with conventional Dirac fermions of the graphene variety(10). Helical Dirac fermions have so far remained elusive owing to the lack of necessary spin-sensitive measurements and because such fermions are forbidden to exist in conventional materials harbouring relativistic electrons, such as graphene(10) or bismuth(11). It has recently been proposed that helical Dirac fermions may exist at the edges of certain types of topologically ordered insulators(3,4,12)-materials with a bulk insulating gap of spin-orbit origin and surface states protected against scattering by time-reversal symmetry-and that their peculiar properties may be accessed provided the insulator is tuned into the so-called topological transport regime(3-9). However, helical Dirac fermions have not been observed in existing topological insulators(13-18). Here we report the realization and characterization of a tunable topological insulator in a bismuth-based class of material by combining spin-imaging and momentum-resolved spectroscopies, bulk charge compensation, Hall transport measurements and surface quantum control. Our results reveal a spin-momentum locked Dirac cone carrying a non-trivial Berry's phase that is nearly 100 per cent spin-polarized, which exhibits a tunable topological fermion density in the vicinity of the Kramers point and can be driven to the long-sought topological spin transport regime. The observed topological nodal state is shown to be protected even up to 300 K. Our demonstration of room-temperature topological order and non-trivial spin-texture in stoichiometric Bi2Se3.M-x (M-x indicates surface doping or gating control) paves the way for future graphene-like studies of topological insulators, and applications of the observed spin-polarized edge channels in spintronic and computing technologies possibly at room temperature.
引用
收藏
页码:1101 / 1105
页数:5
相关论文
共 50 条
  • [1] A tunable topological insulator in the spin helical Dirac transport regime
    D. Hsieh
    Y. Xia
    D. Qian
    L. Wray
    J. H. Dil
    F. Meier
    J. Osterwalder
    L. Patthey
    J. G. Checkelsky
    N. P. Ong
    A. V. Fedorov
    H. Lin
    A. Bansil
    D. Grauer
    Y. S. Hor
    R. J. Cava
    M. Z. Hasan
    Nature, 2009, 460 : 1101 - 1105
  • [2] Optically tunable spin transport on the surface of a topological insulator
    Yudin, D.
    Kibis, O. V.
    Shelykh, I. A.
    NEW JOURNAL OF PHYSICS, 2016, 18
  • [3] Coherent spin transport through helical edge states of topological insulator
    R. A. Niyazov
    D. N. Aristov
    V. Yu. Kachorovskii
    npj Computational Materials, 6
  • [4] Coherent spin transport through helical edge states of topological insulator
    Niyazov, R. A.
    Aristov, D. N.
    Kachorovskii, V. Yu.
    NPJ COMPUTATIONAL MATERIALS, 2020, 6 (01)
  • [5] Tunable chiral and helical edge state transport in a magnetic topological insulator bilayer
    Feng, Yang
    Jiang, Gaoyuan
    Wu, Weixiong
    Li, Shaorui
    He, Ke
    Ma, Xucun
    Xue, Qi-Kun
    Wang, Yayu
    PHYSICAL REVIEW B, 2019, 100 (16)
  • [6] Spin Transport Of Dirac Electrons In Hexagonal Lattice Topological Insulator In The Presence Of Edge Imperfections
    Azim, Anowarul
    Hasan, Beig Rajibul
    Helaly, Nishat Mahzabin
    Ahmed, Tanvir
    Alam, Mahbub
    2020 IEEE REGION 10 SYMPOSIUM (TENSYMP) - TECHNOLOGY FOR IMPACTFUL SUSTAINABLE DEVELOPMENT, 2020, : 1824 - 1827
  • [7] A topological Dirac insulator in a quantum spin Hall phase
    Hsieh, D.
    Qian, D.
    Wray, L.
    Xia, Y.
    Hor, Y. S.
    Cava, R. J.
    Hasan, M. Z.
    NATURE, 2008, 452 (7190) : 970 - U5
  • [8] A topological Dirac insulator in a quantum spin Hall phase
    D. Hsieh
    D. Qian
    L. Wray
    Y. Xia
    Y. S. Hor
    R. J. Cava
    M. Z. Hasan
    Nature, 2008, 452 : 970 - 974
  • [9] Helical Spin Order from Topological Dirac and Weyl Semimetals
    Sun, Xiao-Qi
    Zhang, Shou-Cheng
    Wang, Zhong
    PHYSICAL REVIEW LETTERS, 2015, 115 (07)
  • [10] Spin and Charge Transport on the Surface of a Topological Insulator
    Burkov, A. A.
    Hawthorn, D. G.
    PHYSICAL REVIEW LETTERS, 2010, 105 (06)