Approximate Bayesian inference in semi-mechanistic models

被引:10
|
作者
Aderhold, Andrej [1 ]
Husmeier, Dirk [1 ]
Grzegorczyk, Marco [2 ]
机构
[1] Univ Glasgow, Sch Math & Stat, Glasgow, Lanark, Scotland
[2] Univ Groningen, JBI, Groningen, Netherlands
基金
英国工程与自然科学研究理事会;
关键词
Network Inference; Semi-mechanistic model; Bayesian model selection; Widely applicable information criteria (WAIC; WBIC); Markov jump processes; ANOVA; Systems biology; MARGINAL LIKELIHOOD; COMPUTATION; SIMULATION; NETWORKS; SYSTEMS;
D O I
10.1007/s11222-016-9668-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Inference of interaction networks represented by systems of differential equations is a challenging problem in many scientific disciplines. In the present article, we follow a semi-mechanistic modelling approach based on gradient matching. We investigate the extent to which key factors, including the kinetic model, statistical formulation and numerical methods, impact upon performance at network reconstruction. We emphasize general lessons for computational statisticians when faced with the challenge of model selection, and we assess the accuracy of various alternative paradigms, including recent widely applicable information criteria and different numerical procedures for approximating Bayes factors. We conduct the comparative evaluation with a novel inferential pipeline that systematically disambiguates confounding factors via an ANOVA scheme.
引用
收藏
页码:1003 / 1040
页数:38
相关论文
共 50 条
  • [31] Development of a semi-mechanistic allergenic pollen emission model
    Cai, Ting
    Zhang, Yong
    Ren, Xiang
    Bielory, Leonard
    Mi, Zhongyuan
    Nolte, Christopher G.
    Gao, Yang
    Leung, L. Ruby
    Georgopoulos, Panos G.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 653 : 947 - 957
  • [32] Sparse linear models: Variational approximate inference and Bayesian experimental design
    Seeger, Matthias W.
    INTERNATIONAL WORKSHOP ON STATISTICAL-MECHANICAL INFORMATICS 2009 (IW-SMI 2009), 2009, 197
  • [33] Improving the INLA approach for approximate Bayesian inference for latent Gaussian models
    Ferkingstad, Egil
    Rue, Havard
    ELECTRONIC JOURNAL OF STATISTICS, 2015, 9 (02): : 2706 - 2731
  • [34] Approximate Bayesian Computation by Subset Simulation for Parameter Inference of Dynamical Models
    Vakilzadeh, Majid K.
    Huang, Yong
    Beck, James L.
    Abrahamsson, Thomas
    MODEL VALIDATION AND UNCERTAINTY QUANTIFICATION, VOL 3, 2016, : 37 - 50
  • [35] Approximate Bayesian inference for hierarchical Gaussian Markov random field models
    Rue, Havard
    Martino, Sara
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2007, 137 (10) : 3177 - 3192
  • [36] Application of a Semi-Mechanistic Model for Cracking Unit Balance
    Karaba, Adam
    Zamostny, Petr
    Belohlav, Zdenek
    Lederer, Jaromir
    Herink, Tomas
    CHEMICAL ENGINEERING & TECHNOLOGY, 2015, 38 (04) : 609 - 618
  • [37] Semi-mechanistic modelling in nonlinear regression: A case study
    Domijan, Katarina
    Jorgensen, Murray
    Reid, Jeff
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2006, 48 (03) : 373 - 392
  • [38] Semi-mechanistic models for state-estimation - Soft sensor for polymer melt index prediction
    Feil, B
    Abonyi, J
    Pach, P
    Nemeth, S
    Arva, P
    Nemeth, M
    Nagy, G
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING - ICAISC 2004, 2004, 3070 : 1111 - 1117
  • [39] A hierarchical Bayesian network-based semi-mechanistic model for handling data variabilities in dynamical process systems
    Alauddin, Mohammad
    Khan, Faisal
    Imtiaz, Syed
    Ahmed, Salim
    Amyotte, Paul
    Vanberkel, Peter
    COMPUTERS & CHEMICAL ENGINEERING, 2024, 185
  • [40] Semi-Mechanistic Model to Aid Clinical Understanding of Myelodysplastic Syndromes
    Thakre, Neha
    Maier, Corinna
    Zha, Jiuhong
    Menon, Rajeev
    Engelhardt, Benjamin
    Wolff, Johannes
    Garcia-Manero, Guillermo
    Wei, Andrew
    Miles, Dale
    Mensing, Sven
    Gopalakrishnan, Sathej
    CLINICAL LYMPHOMA MYELOMA & LEUKEMIA, 2020, 20 : S312 - S313