2D Crystals Significantly Enhance the Performance of a Working Fuel Cell

被引:58
作者
Holmes, Stuart M. [1 ]
Balakrishnan, Prabhuraj [1 ]
Kalangi, Vasu. S. [1 ,2 ]
Zhang, Xiang [3 ]
Lozada-Hidalgo, Marcelo [4 ]
Ajayan, Pulickel M. [3 ]
Nair, Rahul R. [1 ,2 ]
机构
[1] Univ Manchester, Sch Chem Engn & Analyt Sci, Manchester M13 9PL, Lancs, England
[2] Univ Manchester, Natl Graphene Inst, Manchester M13 9PL, Lancs, England
[3] Rice Univ, Dept Mat Sci & NanoEngn, 6100 Main,MS-321, Houston, TX 77005 USA
[4] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
METHANOL CROSSOVER; ELECTROLYTE MEMBRANE; COMPOSITE MEMBRANES; PROTON CONDUCTIVITY; GRAPHENE; NAFION(R); DURABILITY; IMPEDANCE; OXIDATION;
D O I
10.1002/aenm.201601216
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
2D atomic crystals such as single layer graphene (SLG) and hexagonal boron nitride (hBN) have been shown to be "unexpectedly permeable" to hydrogen ions under ambient conditions with the proton conductivity rising exponentially with temperature. Here, the first successful addition of SLG made by a chemical vapor deposition (CVD) method is shown to an operational direct methanol fuel cell significantly enhancing the performance of the cell once the temperature is raised above 60 degrees C, the temperature at which the proton conductivity of SLG is higher than the Nafion membrane on which it is mounted. Above this temperature, the resistance to proton transport of the system is not affected by the graphene but the barrier properties of graphene inhibit methanol crossover. The performance of the fuel cell is shown to increase linearly with coverage of SLG above this temperature. Results show that the maximum power density is increased at 70 degrees C by 45% in comparison to the standard membrane electrode assembly without graphene. In addition, a membrane with CVD hBN shows enhanced performance across the entire temperature range due to better proton conductivity at lower temperatures.
引用
收藏
页数:7
相关论文
共 43 条
  • [1] Acker W. P., 2000, [No title captured], Patent No. [US6761988 B1, 6761988]
  • [2] Buchi F. N, 2009, POLYM ELECTROLYTE FU
  • [3] Impermeable atomic membranes from graphene sheets
    Bunch, J. Scott
    Verbridge, Scott S.
    Alden, Jonathan S.
    van der Zande, Arend M.
    Parpia, Jeevak M.
    Craighead, Harold G.
    McEuen, Paul L.
    [J]. NANO LETTERS, 2008, 8 (08) : 2458 - 2462
  • [4] Modification of proton conducting membrane for reducing methanol crossover in a direct-methanol fuel cell
    Choi, WC
    Kim, JD
    Woo, SI
    [J]. JOURNAL OF POWER SOURCES, 2001, 96 (02) : 411 - 414
  • [5] Ci L, 2010, NAT MATER, V9, P430, DOI [10.1038/nmat2711, 10.1038/NMAT2711]
  • [6] The degree and effect of methanol crossover in the direct methanol fuel cell
    Cruickshank, J
    Scott, K
    [J]. JOURNAL OF POWER SOURCES, 1998, 70 (01) : 40 - 47
  • [7] Suppression of methanol cross-over in novel composite membranes for direct methanol fuel cells
    Fang, Yong
    Miao, Ruiying
    Wang, Tongtao
    Wang, Xindong
    [J]. PURE AND APPLIED CHEMISTRY, 2009, 81 (12) : 2309 - 2316
  • [8] Real time measurements of methanol crossover in a DMFC
    Han, Jiahua
    Liu, Hongtan
    [J]. JOURNAL OF POWER SOURCES, 2007, 164 (01) : 166 - 173
  • [9] A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells
    Heinzel, A
    Barragán, VM
    [J]. JOURNAL OF POWER SOURCES, 1999, 84 (01) : 70 - 74
  • [10] Proton transport through one-atom-thick crystals
    Hu, S.
    Lozada-Hidalgo, M.
    Wang, F. C.
    Mishchenko, A.
    Schedin, F.
    Nair, R. R.
    Hill, E. W.
    Boukhvalov, D. W.
    Katsnelson, M. I.
    Dryfe, R. A. W.
    Grigorieva, I. V.
    Wu, H. A.
    Geim, A. K.
    [J]. NATURE, 2014, 516 (7530) : 227 - +