Photometric classification of type Ia supernovae in the SuperNova Legacy Survey with supervised learning

被引:60
作者
Moeller, A. [1 ,2 ,3 ]
Ruhlmann-Kleider, V. [3 ]
Leloup, C. [3 ]
Neveu, J. [3 ,4 ,5 ]
Palanque-Delabrouille, N. [3 ]
Rich, J. [3 ]
Carlberg, R. [6 ]
Lidman, C. [2 ,7 ]
Pritchet, C. [8 ]
机构
[1] Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia
[2] ARC Ctr Excellence All Sky Astrophys CAASTRO, Sydney, NSW, Australia
[3] CEA Saclay, SPP, Irfu, F-91191 Gif Sur Yvette, France
[4] Univ Paris Sud, LAL UMR 8607, F-91898 Orsay, France
[5] CNRS IN2P3, F-91405 Orsay, France
[6] Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON M5S 3H8, Canada
[7] Australian Astron Observ, N Ryde, NSW 2113, Australia
[8] Univ Victoria, Dept Phys & Astron, POB 3055, Victoria, BC V8W 3P6, Canada
基金
澳大利亚研究理事会;
关键词
dark energy experiments; supernova type Ia - standard candles; HIGH-REDSHIFT;
D O I
10.1088/1475-7516/2016/12/008
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In the era of large astronomical surveys, photometric classification of supernovae (SNe) has become an important research field due to limited spectroscopic resources for candidate follow-up and classification. In this work, we present a method to photometrically classify type Ia supernovae based on machine learning with redshifts that are derived from the SN light-curves. This method is implemented on real data from the SNLS deferred pipeline, a purely photometric pipeline that identifies SNe Ia at high-redshifts (0.2 < z < 1.1 ). Our method consists of two stages: feature extraction (obtaining the SN redshift from photometry and estimating light-curve shape parameters) and machine learning classification. We study the performance of different algorithms such as Random Forest and Boosted Decision Trees. We evaluate the performance using SN simulations and real data from the first 3 years of the Supernova Legacy Survey (SNLS), which contains large spectroscopically and photometrically classified type Ia samples. Using the Area Under the Curve (AUC) metric, where perfect classification is given by 1, we find that our best-performing classifier (Extreme Gradient Boosting Decision Tree) has an AUC of 0.98 . We show that it is possible to obtain a large photometrically selected type Ia SN sample with an estimated contamination of less than 5% . When applied to data from the first three years of SNLS, we obtain 529 events. We investigate the differences between classifying simulated SNe, and real SN survey data. In particular, we find that applying a thorough set of selection cuts to the SN sample is essential for good classification. This work demonstrates for the first time the feasibility of machine learning classification in a high-z SN survey with application to real SN data.
引用
收藏
页数:25
相关论文
共 27 条
[1]  
Abell P. A., ARXIV09120201
[2]  
[Anonymous], ARXIV10015210
[3]   The ESO/VLT 3rd year Type Ia supernova data set from the supernova legacy survey [J].
Balland, C. ;
Baumont, S. ;
Basa, S. ;
Mouchet, M. ;
Howell, D. A. ;
Astier, P. ;
Carlberg, R. G. ;
Conley, A. ;
Fouchez, D. ;
Guy, J. ;
Hardin, D. ;
Hook, I. M. ;
Pain, R. ;
Perrett, K. ;
Pritchet, C. J. ;
Regnault, N. ;
Rich, J. ;
Sullivan, M. ;
Antilogus, P. ;
Arsenijevic, V. ;
Le Du, J. ;
Fabbro, S. ;
Lidman, C. ;
Mourao, A. ;
Palanque-Delabrouille, N. ;
Pecontal, E. ;
Ruhlmann-Kleider, V. .
ASTRONOMY & ASTROPHYSICS, 2009, 507 (01) :85-U176
[4]   Photometric selection of Type Ia supernovae in the Supernova Legacy Survey [J].
Bazin, G. ;
Ruhlmann-Kleider, V. ;
Palanque-Delabrouille, N. ;
Rich, J. ;
Aubourg, E. ;
Astier, P. ;
Balland, C. ;
Basa, S. ;
Carlberg, R. G. ;
Conley, A. ;
Fouchez, D. ;
Guy, J. ;
Hardin, D. ;
Hook, I. M. ;
Howell, D. A. ;
Pain, R. ;
Perrett, K. ;
Pritchet, C. J. ;
Regnault, N. ;
Sullivan, M. ;
Fourmanoit, N. ;
Gonzalez-Gaitan, S. ;
Lidman, C. ;
Perlmutter, S. ;
Ripoche, P. ;
Walker, E. S. .
ASTRONOMY & ASTROPHYSICS, 2011, 534
[5]   The core-collapse rate from the Supernova Legacy Survey [J].
Bazin, G. ;
Palanque-Delabrouille, N. ;
Rich, J. ;
Ruhlmann-Kleider, V. ;
Aubourg, E. ;
Le Guillou, L. ;
Astier, P. ;
Balland, C. ;
Basa, S. ;
Carlberg, R. G. ;
Conley, A. ;
Fouchez, D. ;
Guy, J. ;
Hardin, D. ;
Hook, I. M. ;
Howell, D. A. ;
Pain, R. ;
Perrett, K. ;
Pritchet, C. J. ;
Regnault, N. ;
Sullivan, M. ;
Antilogus, P. ;
Arsenijevic, V. ;
Baumont, S. ;
Fabbro, S. ;
Le Du, J. ;
Lidman, C. ;
Mouchet, M. ;
Mourao, A. ;
Walker, E. S. .
ASTRONOMY & ASTROPHYSICS, 2009, 499 (03) :653-660
[6]   SUPERNOVA SIMULATIONS AND STRATEGIES FOR THE DARK ENERGY SURVEY [J].
Bernstein, J. P. ;
Kessler, R. ;
Kuhlmann, S. ;
Biswas, R. ;
Kovacs, E. ;
Aldering, G. ;
Crane, I. ;
D'Andrea, C. B. ;
Finley, D. A. ;
Frieman, J. A. ;
Hufford, T. ;
Jarvis, M. J. ;
Kim, A. G. ;
Marriner, J. ;
Mukherjee, P. ;
Nichol, R. C. ;
Nugent, P. ;
Parkinson, D. ;
Reis, R. R. R. ;
Sako, M. ;
Spinka, H. ;
Sullivan, M. .
ASTROPHYSICAL JOURNAL, 2012, 753 (02)
[7]   Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples [J].
Betoule, M. ;
Kessler, R. ;
Guy, J. ;
Mosher, J. ;
Hardin, D. ;
Biswas, R. ;
Astier, P. ;
El-Hage, P. ;
Konig, M. ;
Kuhlmann, S. ;
Marriner, J. ;
Pain, R. ;
Regnault, N. ;
Balland, C. ;
Bassett, B. A. ;
Brown, P. J. ;
Campbell, H. ;
Carlberg, R. G. ;
Cellier-Holzern, F. ;
Cinabro, D. ;
Conley, A. ;
D'Andrea, C. B. ;
DePoy, D. L. ;
Doi, M. ;
Ellis, R. S. ;
Fabbro, S. ;
Filippenko, A. V. ;
Foley, R. J. ;
Frieman, J. A. ;
Fouchez, D. ;
Galbany, L. ;
Goobar, A. ;
Gupta, R. R. ;
Hill, G. J. ;
Hlozek, R. ;
Hogan, C. J. ;
Hook, I. M. ;
Howell, D. A. ;
Jha, S. W. ;
Le Guillou, L. ;
Leloudas, G. ;
Lidrnan, C. ;
Marshall, J. L. ;
Moeller, A. ;
Mourao, A. M. ;
Neveu, J. ;
Nichol, R. ;
Olmstead, M. D. ;
Palanque-Delabrouille, N. ;
Perlinutter, S. .
ASTRONOMY & ASTROPHYSICS, 2014, 568
[8]   SNLS spectroscopy: testing for evolution in type Ia supernovae [J].
Bronder, T. J. ;
Hook, I. M. ;
Astier, P. ;
Balam, D. ;
Balland, C. ;
Basa, S. ;
Carlberg, R. G. ;
Conley, A. ;
Fouchez, D. ;
Guy, J. ;
Howell, D. A. ;
Neill, J. D. ;
Pain, R. ;
Perrett, K. ;
Pritchet, C. J. ;
Regnault, N. ;
Sullivan, M. ;
Baumont, S. ;
Fabbro, S. ;
Filliol, M. ;
Perlmutter, S. ;
Ripoche, P. .
ASTRONOMY & ASTROPHYSICS, 2008, 477 (03) :716-U33
[9]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[10]   Verifying the cosmological utility of Type Ia Supernovae: Implications of a dispersion in the ultraviolet spectra [J].
Ellis, R. S. ;
Sullivan, M. ;
Nugent, P. E. ;
Howell, D. A. ;
Gal-Yam, A. ;
Astier, P. ;
Balam, D. ;
Balland, C. ;
Basa, S. ;
Carlberg, R. G. ;
Conley, A. ;
Fouchez, D. ;
Guy, J. ;
Hardin, D. ;
Hook, I. ;
Pain, R. ;
Perrett, K. ;
Pritchet, C. J. ;
Regnault, N. .
ASTROPHYSICAL JOURNAL, 2008, 674 (01) :51-69