Set-valued pseudomonotone maps and degenerate evolution inclusions

被引:68
作者
Kuttler, KL [1 ]
Shillor, M
机构
[1] Michigan Technol Univ, Dept Math Sci, Houghton, MI 49931 USA
[2] Oakland Univ, Dept Math & Stat, Rochester, MI 48309 USA
关键词
D O I
10.1142/S0219199799000067
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop the theory of evolution inclusions for set-valued pseudomonotone maps. The problems we investigate are (Bu)' + Au 3 f, where B = B(t) is a linear operator that may vanish and A is a set-valued pseudomonotone operator. We prove the existence of unique solutions of such, possibly degenerate, problems. We apply the theory to the problem of dynamic frictional contact with a slip dependent friction coefficient and prove the existence of its unique weak solution. This theory opens the way for the investigation of sophisticated dynamical models in mechanics and frictional contact problems.
引用
收藏
页码:87 / 123
页数:37
相关论文
共 36 条
[1]  
Adams A, 2003, SOBOLEV SPACES
[2]  
AMASSAD A, IN PRESS MATH MET AP
[3]   A QUASI-STATIC FRICTIONAL PROBLEM WITH NORMAL COMPLIANCE [J].
ANDERSSON, LE .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1991, 16 (04) :347-369
[4]   On the dynamic behaviour of a thermoviscoelastic body in frictional contact with a rigid obstacle [J].
Andrews, KT ;
Kuttler, KL ;
Shillor, M .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 1997, 8 :417-436
[5]   A dynamic thermoviscoelastic contact problem with friction and wear [J].
Andrews, KT ;
Shillor, M ;
Wright, S ;
Klarbring, A .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1997, 35 (14) :1291-1309
[6]  
[Anonymous], 1991, UNILATERAL PROBLEMS
[7]  
[Anonymous], 1973, OPERATEURS MAXIMAUX
[8]  
Carroll R. W., 1976, Singular and Degenerate Cauchy Problems
[9]   Formulation and approximation of quasistatic frictional contact [J].
Cocu, M ;
Pratt, E ;
Raous, M .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1996, 34 (07) :783-798
[10]  
Duvaut G., 1976, GRUNDLEHREN MATH WIS, DOI 10.1007/978-3-642-66165-5