Odd Type Generalized Complex Structures on 4-Manifolds

被引:1
作者
Chen, Haojie [1 ]
Nie, Xiaolan [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Generalized complex structure; Transversely holomorphic foliation; Bihermitian structure; 4-manifold;
D O I
10.1007/s12220-019-00271-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that a compact smooth 4-manifold admits generalized complex structures of odd type if and only if it has a transversely holomorphic 2-foliation. We also obtain an equivalent description of generalized complex structures in terms of almost bihermitian structures.
引用
收藏
页码:457 / 474
页数:18
相关论文
共 25 条
  • [1] [Anonymous], 2004, ARXIVMATHDG0401221
  • [2] Generalized Kahler manifolds, commuting complex structures, and split tangent bundles
    Apostolov, Vestislav
    Gualtieri, Marco
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 271 (02) : 561 - 575
  • [3] Type one generalized Calabi-Yaus
    Bailey, Michael
    Cavalcanti, Gil R.
    Gualtieri, Marco
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2017, 120 : 89 - 95
  • [4] Symplectic Foliations and Generalized Complex Structures
    Bailey, Michael
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2014, 66 (01): : 31 - 56
  • [5] Bailey M, 2013, J DIFFER GEOM, V95, P1
  • [6] On transversely holomorphic flows .1.
    Brunella, M
    [J]. INVENTIONES MATHEMATICAE, 1996, 126 (02) : 265 - 279
  • [7] Cavalcanti G.R, 2005, ARXIVMATH0501406
  • [8] Cavalcanti GR, 2007, J DIFFER GEOM, V76, P35
  • [9] Blow-up of generalized complex 4-manifolds
    Cavalcanti, Gil R.
    Gualtieri, Marco
    [J]. JOURNAL OF TOPOLOGY, 2009, 2 (04) : 840 - 864
  • [10] The Monge-Ampere equation for non-integrable almost complex structures
    Chu, Jianchun
    Tosatti, Valentino
    Weinkove, Ben
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2019, 21 (07) : 1949 - 1984