On a class of nonlocal porous medium equations of Kirchhoff type

被引:0
作者
Sert, Ugur [1 ]
机构
[1] Hacettepe Univ, Dept Math, TR-06800 Ankara, Turkey
关键词
Nonlocal diffusion; Kirchhoff-type problem; variable nonlinearity; porous medium equation; LONG-TIME BEHAVIOR; ASYMPTOTIC-BEHAVIOR; DIFFUSION-EQUATIONS; PARABOLIC EQUATIONS; BLOW-UP; EXISTENCE; UNIQUENESS; SOLVABILITY; PROFILES;
D O I
10.55730/1300-0098.3265
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Dirichlet problem for the degenerate parabolic equation of the Kirchhoff type u(t) - a (parallel to u parallel to(p)(Lp)(Omega) Sigma D-n(i=1)i(vertical bar u vertical bar(p-2)D(i)u) + b(x, t, u) - f(x, t) in Q(T) - Omega x (0, T), where p >= 2, T > 0, Omega subset of R-n, n >= 2, is a smooth bounded domain. The coefficient a(.) is real-valued function defined on R+ and b(., ., tau) is a measurable function with variable nonlinearity in tau. We prove existence of weak solutions of the considered problem under appropriate and general conditions on a and b. Sufficient conditions for uniqueness are found and in the case f equivalent to 0 the decay rates for parallel to u parallel to(L2(Omega)) are obtained.
引用
收藏
页码:2231 / 2249
页数:20
相关论文
共 42 条
[1]   Existence-uniqueness and long time behavior for a class of nonlocal nonlinear parabolic evolution equations [J].
Ackleh, AS ;
Ke, L .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (12) :3483-3492
[2]   On a nonlocal degenerate parabolic problem [J].
Almeida, Rui M. P. ;
Antontsev, Stanislav N. ;
Duque, Jose C. M. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 27 :146-157
[3]  
Anderson JR, 1997, MATH METHOD APPL SCI, V20, P1069, DOI 10.1002/(SICI)1099-1476(19970910)20:13<1069::AID-MMA867>3.0.CO
[4]  
2-Y
[5]  
[Anonymous], 1969, Quelques mthodes de rsolution de problemes aux limites non linaires
[6]  
[Anonymous], 2007, The porous medium equation: mathematical theory, DOI DOI 10.1093/ACPROF:OSO/9780198569039.001.0001
[7]  
[Anonymous], 1975, MATEMATICHESKIY SBOR
[8]  
Antontsev SN., 2015, Evolution PDEs with nonstandard growth conditions, DOI [10.2991/978-94-6239-112-3, DOI 10.2991/978-94-6239-112-3]
[9]  
Bebernes J, 1989, APPL MATH SCI, DOI [10.1007/978-1-4612-4546-9, DOI 10.1007/978-1-4612-4546-9]
[10]   The Nonlocal Porous Medium Equation: Barenblatt Profiles and Other Weak Solutions [J].
Biler, Piotr ;
Imbert, Cyril ;
Karch, Grzegorz .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 215 (02) :497-529