Quasi-long-range order in the random anisotropy Heisenberg model:: Functional renormalization group in 4-ε dimensions

被引:48
作者
Feldman, DE [1 ]
机构
[1] Weizmann Inst Sci, Dept Condensed Matter Phys, IL-76100 Rehovot, Israel
[2] LD Landau Theoret Phys Inst, Chernogolovka 142432, Moscow Region, Russia
关键词
D O I
10.1103/PhysRevB.61.382
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The large-distance behaviors of the random field and random anisotropy O(N) models are studied with the functional renormalization group in 4-epsilon dimensions. The random anisotropy Heisenberg (N=3) model is found to have a phase with an infinite correlation length at low temperatures and weak disorder. The correlation function of the magnetization obeys a power law [m(r(1))m(r(2))]similar to\r(1)-r(2)\(-0.62 epsilon). The magnetic susceptibility diverges at low fields as chi similar to H-1+0.15 epsilon. In the random field O(N) model the correlation length is found to be finite at the arbitrarily weak disorder for any N>3. The random field case is studied with a simple method, based on a rigorous inequality. This approach allows one to avoid the integration of the functional renormalization-group equations.
引用
收藏
页码:382 / 390
页数:9
相关论文
共 46 条
[11]  
Feigel'man M. V., 1986, Soviet Physics - JETP, V64, P562
[12]   Weak disorder in the two-dimensional XY dipole ferromagnet [J].
Feldman, DE .
PHYSICAL REVIEW B, 1997, 56 (06) :3167-3172
[13]   Weak disorder in a two-dimensional dipole magnet [J].
Feldman, DE .
JETP LETTERS, 1997, 65 (01) :114-119
[14]   Quasi-long-range order in random-anisotropy Heisenberg models [J].
Fisch, R .
PHYSICAL REVIEW B, 1998, 58 (09) :5684-5691
[15]   Power-law correlations and orientational glass in random-field Heisenberg models [J].
Fisch, R .
PHYSICAL REVIEW B, 1998, 57 (01) :269-276
[17]   RANDOM-FIELDS, RANDOM ANISOTROPIES, NONLINEAR SIGMA-MODELS, AND DIMENSIONAL REDUCTION [J].
FISHER, DS .
PHYSICAL REVIEW B, 1985, 31 (11) :7233-7251
[18]   Order-disorder transition in an external field in random ferromagnets and nematic elastomers [J].
Fridrikh, SV ;
Terentjev, EM .
PHYSICAL REVIEW LETTERS, 1997, 79 (23) :4661-4664
[19]   Variational study of the random-field XY model [J].
Garel, T ;
Iori, G ;
Orland, H .
PHYSICAL REVIEW B, 1996, 53 (06) :R2941-R2944
[20]   ELASTIC THEORY OF PINNED FLUX LATTICES [J].
GIAMARCHI, T ;
LEDOUSSAL, P .
PHYSICAL REVIEW LETTERS, 1994, 72 (10) :1530-1533