Quasi-long-range order in the random anisotropy Heisenberg model:: Functional renormalization group in 4-ε dimensions

被引:48
作者
Feldman, DE [1 ]
机构
[1] Weizmann Inst Sci, Dept Condensed Matter Phys, IL-76100 Rehovot, Israel
[2] LD Landau Theoret Phys Inst, Chernogolovka 142432, Moscow Region, Russia
关键词
D O I
10.1103/PhysRevB.61.382
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The large-distance behaviors of the random field and random anisotropy O(N) models are studied with the functional renormalization group in 4-epsilon dimensions. The random anisotropy Heisenberg (N=3) model is found to have a phase with an infinite correlation length at low temperatures and weak disorder. The correlation function of the magnetization obeys a power law [m(r(1))m(r(2))]similar to\r(1)-r(2)\(-0.62 epsilon). The magnetic susceptibility diverges at low fields as chi similar to H-1+0.15 epsilon. In the random field O(N) model the correlation length is found to be finite at the arbitrarily weak disorder for any N>3. The random field case is studied with a simple method, based on a rigorous inequality. This approach allows one to avoid the integration of the functional renormalization-group equations.
引用
收藏
页码:382 / 390
页数:9
相关论文
共 46 条
[1]  
AHARONY A, 1980, PHYS REV LETT, V45, P1583, DOI 10.1103/PhysRevLett.45.1583
[2]   ROUNDING OF 1ST-ORDER PHASE-TRANSITIONS IN SYSTEMS WITH QUENCHED DISORDER [J].
AIZENMAN, M ;
WEHR, J .
PHYSICAL REVIEW LETTERS, 1989, 62 (21) :2503-2506
[3]   LOW-TEMPERATURE DYNAMICS AND LOWER CRITICAL DIMENSIONALITY IN THE RANDOM ANISOTROPY SERIES ALPHA-DYXGD1-XNI [J].
BARBARA, B ;
COUACH, M ;
DIENY, B .
EUROPHYSICS LETTERS, 1987, 3 (10) :1129-1133
[4]   DYNAMIC LIGHT-SCATTERING STUDY OF NEMATIC AND SMECTIC-A LIQUID-CRYSTAL ORDERING IN SILICA AEROGEL [J].
BELLINI, T ;
CLARK, NA ;
SCHAEFER, DW .
PHYSICAL REVIEW LETTERS, 1995, 74 (14) :2740-2743
[5]   VORTICES IN HIGH-TEMPERATURE SUPERCONDUCTORS [J].
BLATTER, G ;
FEIGELMAN, MV ;
GESHKENBEIN, VB ;
LARKIN, AI ;
VINOKUR, VM .
REVIEWS OF MODERN PHYSICS, 1994, 66 (04) :1125-1388
[6]   Stability of the Bragg glass phase in a layered geometry [J].
Carpentier, D ;
LeDoussal, P ;
Giamarchi, T .
EUROPHYSICS LETTERS, 1996, 35 (05) :379-384
[7]   Simulation evidence of critical behavior of isotropic-nematic phase transition in a porous medium [J].
Chakrabarti, J .
PHYSICAL REVIEW LETTERS, 1998, 81 (02) :385-388
[8]   X-RAY-SCATTERING STUDY OF SMECTIC ORDERING IN A SILICA AEROGEL [J].
CLARK, NA ;
BELLINI, T ;
MALZBENDER, RM ;
THOMAS, BN ;
RAPPAPORT, AG ;
MUZNY, CD ;
SCHAEFER, DW ;
HRUBESH, L .
PHYSICAL REVIEW LETTERS, 1993, 71 (21) :3505-3508
[9]   Comment on "Roughening transition of interfaces in disordered systems" - Reply [J].
Emig, T ;
Nattermann, T .
PHYSICAL REVIEW LETTERS, 1998, 81 (26) :5954-5954
[10]   Roughening transition of interfaces in disordered systems [J].
Emig, T ;
Nattermann, T .
PHYSICAL REVIEW LETTERS, 1998, 81 (07) :1469-1472