Nonequilibrium quantum systems with electron-phonon interactions: Transient dynamics and approach to steady state

被引:88
作者
Wilner, Eli Y. [1 ]
Wang, Haobin [2 ]
Thoss, Michael [3 ,4 ]
Rabani, Eran [5 ]
机构
[1] Tel Aviv Univ, Sch Phys & Astron, Sackler Fac Exact Sci, IL-69978 Tel Aviv, Israel
[2] New Mexico State Univ, Dept Chem & Biochem, Las Cruces, NM 88003 USA
[3] Univ Erlangen Nurnberg, Inst Theoret Phys, D-91058 Erlangen, Germany
[4] Univ Erlangen Nurnberg, Interdisciplinary Ctr Mol Mat, D-91058 Erlangen, Germany
[5] Tel Aviv Univ, Sch Chem, Sackler Fac Exact Sci, IL-69978 Tel Aviv, Israel
来源
PHYSICAL REVIEW B | 2014年 / 89卷 / 20期
基金
美国国家科学基金会;
关键词
TIME-DEPENDENT HARTREE; MOLECULAR JUNCTIONS; TRANSPORT; CONDUCTANCE; SCATTERING; NANOSCALE; MODEL;
D O I
10.1103/PhysRevB.89.205129
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The nonequilibrium dynamics of a quantum dot with electron-phonon interactions described by a generalized Holstein model is presented. A combination of methodologies, including the reduced density matrix formalism, the multilayer multiconfiguration time-dependent Hartree method, and a time-dependent nonequilibrium Green's function approach, is used to explore the transient behavior on multiple time scales as the system approaches steady state. The dot population dynamics on short to intermediate times is governed by the dot-lead hybridization parameter (Gamma) and by the typical phonon frequency (omega(c)) and depends on the location of the energy level of the dot relative to the bias window. At longer times, the dynamics shows a distinct behavior depending on whether the system is in the adiabatic or nonadiabatic regime, with a quantum dot occupation that may depend on the initial preparation of the phonon degrees of freedom. A "phase" diagram of this effect as a function of the polaron shift (lambda) for various phonon frequencies is derived, suggesting the existence of bistability on experimentally observable time scales.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Nonequilibrium electron-phonon coupling after ultrashort laser excitation of gold
    Mueller, B. Y.
    Rethfeld, B.
    [J]. APPLIED SURFACE SCIENCE, 2014, 302 : 24 - 28
  • [32] Pseudogap in the Eliashberg approach based on electron-phonon and electron-electron-phonon interaction
    Szczesniak, R.
    Durajski, A. P.
    Duda, A. M.
    [J]. ANNALEN DER PHYSIK, 2017, 529 (04)
  • [33] Role of substrate induced electron-phonon interactions in biased graphitic bilayers
    Davenport, A. R.
    Hague, J. P.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2016, 28 (32)
  • [34] Charge carrier mobility in systems with local electron-phonon interaction
    Prodanovic, Nikola
    Vukmirovic, Nenad
    [J]. PHYSICAL REVIEW B, 2019, 99 (10)
  • [35] Electron-Phonon Interactions in Single Octanedithiol Molecular Junctions
    Hihath, Joshua
    Bruot, Christopher
    Tao, Nongjian
    [J]. ACS NANO, 2010, 4 (07) : 3823 - 3830
  • [36] Polar optical phonon states and their electron-phonon coupling properties in a wurtzite nitride quantum dot
    Zhang, L.
    Xie, H. J.
    Shao, P. M.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2010, 74 (03) : 397 - 407
  • [37] Efficiency of thermoelectric energy conversion in biphenyl-dithiol junctions: Effect of electron-phonon interactions
    Sergueev, Nikolai
    Shin, Seungha
    Kaviany, Massoud
    Dunietz, Barry
    [J]. PHYSICAL REVIEW B, 2011, 83 (19)
  • [38] Electron-phonon bound states and impurity band formation in quantum wells
    de Oliveira, Bruna P. W.
    Haas, Stephan
    [J]. PHYSICAL REVIEW B, 2009, 79 (15):
  • [39] Electron-Phonon Interaction in Strongly Correlated Systems
    Capone, M.
    Castellani, C.
    Grilli, M.
    [J]. ADVANCES IN CONDENSED MATTER PHYSICS, 2010, 2010
  • [40] Quantum Nonequilibrium Steady States Induced by Repeated Interactions
    Karevski, Dragi
    Platini, Thierry
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (20)