Faults Diagnosis of Induction Machine by Using Feed-Forward Neural Networks and Genetic Algorithms

被引:0
作者
Hasni, M. [1 ]
Hamdani, S. [1 ]
Taibi, Z. M. [3 ]
Touhami, O. [3 ]
Ibtiouen, R. [3 ]
Rezzoug, A. [2 ]
机构
[1] Univ Sci & Technol H Boumediene, LSEI, BP 32, Algiers 16111, Algeria
[2] UHP, GREEN, F-54516 Nancy, France
[3] ENPolytech Alger, LRE, Algiers 16200, Algeria
来源
2013 9TH ASIAN CONTROL CONFERENCE (ASCC) | 2013年
关键词
Induction machine; Faults diagnosis; ANNS; GAs;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present the results of our investigation in the use of the multilayer feed-forward artificial neural networks (ANNs) and genetic algorithms (GAs) for fault diagnosis of induction machine. ANNs are used effectively to determine the classification of the faults of induction machine tested at different loads and at different frequencies. The novelty in this work is that proposed methodology is tested experimentally on four 4kW/1500rpm induction machines, with three current source frequencies (25,40,50) Hz on six different loads. The obtained results provide a satisfactory level of accuracy.
引用
收藏
页数:6
相关论文
共 50 条
[41]   Application of Radial Basis Neural Network to diagnostics of induction motor stator faults using axial flux [J].
Pietrowski, Wojciech .
PRZEGLAD ELEKTROTECHNICZNY, 2011, 87 (06) :190-192
[42]   Induction Machine Fault Diagnosis Using Stator Current Subspace Spectral Estimation [J].
Kumar, R. R. ;
Cirrincione, G. ;
Cirrincione, M. ;
Tortella, A. ;
Andriollo, M. .
2018 21ST INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS), 2018, :2565-2570
[43]   Experimental Exploitation for the Diagnosis to the Induction Machine under a Bearing Fault - using MCSA [J].
Noureddine, Bessous ;
Eddine, Zouzou Salah ;
Mohamed, Sahraoui .
2015 4TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2015, :73-+
[44]   Optimal Power Flow Using PSO Algorithms Based on Artificial Neural Networks [J].
Al Butti, Omar Sagban Taghi ;
Burunkaya, Mustafa ;
Rahebi, Javad ;
Lopez-Guede, Jose Manuel .
IEEE ACCESS, 2024, 12 :154778-154795
[45]   Bi-objective optimization of induction machine using interval-based interactive algorithms [J].
Samarkanov, Dmitry ;
Gillon, Frederic ;
Brochet, Pascal ;
Laloy, Daniel .
COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2014, 33 (03) :729-744
[46]   Modeling industrial scale washing machine process using artificial neural networks [J].
Dybinski, Olaf ;
Milewski, Jaroslaw ;
Szczesniak, Arkadiusz ;
Szablowski, Lukasz ;
Martsinchyk, Aliaxandr ;
Rusowicz, Artur ;
Grzebielec, Andrzej ;
Romaszkiewicz-Kotkowska, Roza .
EURO-MEDITERRANEAN JOURNAL FOR ENVIRONMENTAL INTEGRATION, 2024, 9 (04) :1933-1946
[47]   Rotor Fault Diagnosis in a Squirrel-Cage Induction Machine Using Support Vector [J].
Hamdani, S. ;
Mezerreg, H. ;
Boutikar, B. ;
Lahcene, N. ;
Touhami, O. ;
Ibtiouen, R. .
2012 XXTH INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES (ICEM), 2012, :1817-1822
[48]   Fault Diagnosis of Induction Machine for Rotor Cage Damage Using MCSA for Industrial Application [J].
Prasad, Kapu V. Sri Ram ;
Singh, Varsha .
ELECTRIC POWER COMPONENTS AND SYSTEMS, 2024,
[49]   Model -free Sensor Placement for Water Distribution Networks using Genetic Algorithms and Clustering [J].
Romero-Ben, Luis ;
Cembrano, Gabriela ;
Puig, Vicenc ;
Blesa, Joaquim .
IFAC PAPERSONLINE, 2022, 55 (33) :54-59
[50]   Bearing Ball Fault Diagnosis of an Induction Machine by Using the Hilbert Transform and the Performance of Intelligent Control [J].
El Idrissi, Abderrahman ;
Derouich, Aziz ;
Mahfoud, Said ;
El Ouanjli, Najib ;
Chantoufi, Ahmed .
DIGITAL TECHNOLOGIES AND APPLICATIONS, ICDTA 2023, VOL 2, 2023, 669 :580-589