Compact and Discriminative Descriptor Inference Using Multi-Cues

被引:38
作者
Han, Yahong [1 ]
Yang, Yi [2 ]
Wu, Fei [3 ]
Hong, Richang [4 ]
机构
[1] Tianjin Univ, Tianjin Key Lab Cognit Comp & Applicat, Sch Comp Sci & Technol, Tianjin 300072, Peoples R China
[2] Univ Technol Sydney, Ctr Quantum Computat & Intelligent Syst, Sydney, NSW 2007, Australia
[3] Zhejiang Univ, Coll Comp Sci, Hangzhou 310027, Zhejiang, Peoples R China
[4] Hefei Univ Technol, Sch Comp & Informat, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
Action recognition; descriptor learning; multi-view embedding; REPRESENTATION;
D O I
10.1109/TIP.2015.2479917
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Feature descriptors around local interest points are widely used in human action recognition both for images and videos. However, each kind of descriptors describes the local characteristics around the reference point only from one cue. To enhance the descriptive and discriminative ability from multiple cues, this paper proposes a descriptor learning framework to optimize the descriptors at the source by learning a projection from multiple descriptors' spaces to a new Euclidean space. In this space, multiple cues and characteristics of different descriptors are fused and complemented for each other. In order to make the new descriptor more discriminative, we learn the multi-cue projection by the minimization of the ratio of within-class scatter to between-class scatter, and therefore, the discriminative ability of the projected descriptor is enhanced. In the experiment, we evaluate our framework on the tasks of action recognition from still images and videos. Experimental results on two benchmark image and two benchmark video data sets demonstrate the effectiveness and better performance of our method.
引用
收藏
页码:5114 / 5126
页数:13
相关论文
共 37 条
[1]   Principal component analysis [J].
Abdi, Herve ;
Williams, Lynne J. .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (04) :433-459
[2]  
[Anonymous], CHINA CLIN PRACT MED
[3]   SURF: Speeded up robust features [J].
Bay, Herbert ;
Tuytelaars, Tinne ;
Van Gool, Luc .
COMPUTER VISION - ECCV 2006 , PT 1, PROCEEDINGS, 2006, 3951 :404-417
[4]   Shape matching and object recognition using shape contexts [J].
Belongie, S ;
Malik, J ;
Puzicha, J .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (04) :509-522
[5]   Discriminative Learning of Local Image Descriptors [J].
Brown, Matthew ;
Hua, Gang ;
Winder, Simon .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (01) :43-57
[6]  
Cai D., 2007, IEEE C COMP VIS ICCV, P1, DOI DOI 10.1109/CVPR.2007.383054
[7]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[8]  
Chen M. Y., 2009, CMUCS09161 CARN MELL
[9]  
Delaitre Vincent, 2010, P BRIT MACH VIS C, DOI DOI 10.5244/C.24.97
[10]  
Demmel J. W., 1997, Applied Numerical Linear Algebra