On sup-norm bounds part II: GL(2) Eisenstein series

被引:7
作者
Assing, Edgar [1 ]
机构
[1] Univ Bristol, Sch Math, Univ Walk, Bristol, Avon, England
关键词
Sup-norm; Eisenstein series; number fields; amplification; EIGENFUNCTIONS; ERGODICITY;
D O I
10.1515/forum-2018-0014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the sup-norm problem in the context of analytic Eisenstein series for GL(2) over number fields. We prove a hybrid bound which is sharper than the corresponding bound for MaaSS forms. Our results generalize those of Huang and Xu where the case of Eisenstein series of square-free levels over the base field Q had been considered.
引用
收藏
页码:971 / 1006
页数:36
相关论文
共 27 条
[1]  
Assing E., 2017, PREPRINT
[2]   ON THE SIZE OF p-ADIC WHITTAKER FUNCTIONS [J].
Assing, Edgar .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (08) :5287-5340
[3]  
Blamer V., 2016, PREPRINT
[4]  
Bump D., 1997, CAMBRIDGE STUD ADV M, V55
[5]   A ZERO-FREE REGION FOR THE HECKE L-FUNCTIONS [J].
COLEMAN, MD .
MATHEMATIKA, 1990, 37 (74) :287-304
[6]  
Fogels E., 1962, ACTA ARITH, V8, P307
[7]  
Gelbart S., 1979, P S PURE MATH, P213, DOI 10.1090/pspum/033.1/546600
[8]   Lower bounds for L-functions at the edge of the critical strip [J].
Gelbart, Stephen S. ;
Lapid, Erez M. .
AMERICAN JOURNAL OF MATHEMATICS, 2006, 128 (03) :619-638
[9]   The subconvexity problem for Rankin-Selberg L-functions and equidistribution of Heegner points.: II [J].
Harcos, G ;
Michel, P .
INVENTIONES MATHEMATICAE, 2006, 163 (03) :581-655
[10]  
Hinz J. G., 1980, Acta Arith., V38, P209