Particle filtering for multi-target tracking and sensor management

被引:0
作者
Doucet, A [1 ]
Vo, BN [1 ]
Andrieu, C [1 ]
Davy, M [1 ]
机构
[1] Univ Melbourne, Dept Elect & Elect Engn, Melbourne, Vic 3010, Australia
来源
PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOL I | 2002年
关键词
tracking; sensor management; filtering; estimation; particle filter;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present computational methods based on particle filters to address the multi-target tracking and sensor management problems. We present a jump Markov model of multi-target systems and an efficient particle filtering algorithm to perform inference. In addition, we also present a formulation of the sensor management problem and its solution using particle methods.
引用
收藏
页码:474 / 481
页数:2
相关论文
共 14 条
  • [1] ANDRIEU C, 1999, P WORK IEEE HOS
  • [2] ANDRIEU C, 2002, 427 CUEDFINFENGTR
  • [3] Bar-Shalom Y., 2001, ESTIMATION TRACKING
  • [4] On sequential Monte Carlo sampling methods for Bayesian filtering
    Doucet, A
    Godsill, S
    Andrieu, C
    [J]. STATISTICS AND COMPUTING, 2000, 10 (03) : 197 - 208
  • [5] Doucet A., 2001, SEQUENTIAL MONTE CAR
  • [6] Following a moving target - Monte Carlo inference for dynamic Bayesian models
    Gilks, WR
    Berzuini, C
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2001, 63 : 127 - 146
  • [7] GORDON NJ, 1999, P SPIE
  • [8] JULIER S, 2002, IN PRESS AUTOMATICA
  • [9] Kim C. J., 1999, State-space Models with Regime Switching: Classical and Gibbssampling Approaches with Applications
  • [10] Kitagawa G., 1996, Journal of Computational and Graphical Statistics, V5, P1, DOI [10.1080/10618600.1996.10474692, DOI 10.1080/10618600.1996.10474692, DOI 10.2307/1390750]