Object tracking: Feature selection by reinforcement learning

被引:0
作者
Deng, Jiali [1 ,2 ]
Gong, Haigang [1 ,2 ]
Liu, Minghui [1 ]
Liu, Ming [1 ,2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Sichuan, Peoples R China
[2] Univ Elect Sci & Technol China, Yangtze Delta Reg Inst Quzhou, Quzhou 324000, Zhejiang, Peoples R China
来源
INTERNATIONAL CONFERENCE ON COMPUTER VISION, APPLICATION, AND DESIGN (CVAD 2021) | 2021年 / 12155卷
关键词
object tracking; feature selection; reinforcement learning; discriminative correlation filters;
D O I
10.1117/12.2626549
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In recent years, deep convolutional features have been deployed in discriminative correlation filters (DCF) to boost object tracking performance. However, features captured from pre-trained classification networks are usually trained for image classification tasks, not object tracking. In this paper, we find that different convolutional feature channels play different roles in tracking different targets. Some feature channels are favorable for tracking a given target and can be acquired based on this target, some are irrelevant to track this target, and some can be the primary cause of trackers' performance degradation when tracking this target. Thus, we perform feature selection before learning correlation filters for object tracking, and the feature selection module is realized by reinforcement learning. We penalize the features non-positive to obtain a DCF tracker based on positive convolutional feature channels. Compared with DCF based trackers without a feature selection technique, our scheme improves the robustness of target representation, lessens the dimension of activations, and achieves better tracking performance. Extensive experiments on the OTB dataset demonstrate our feature selection scheme is simple, robust, and effective for DCF based trackers.
引用
收藏
页数:6
相关论文
共 18 条
[1]   Kernel-based object tracking [J].
Comaniciu, D ;
Ramesh, V ;
Meer, P .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2003, 25 (05) :564-577
[2]   Convolutional Features for Correlation Filter Based Visual Tracking [J].
Danelljan, Martin ;
Hager, Gustav ;
Khan, Fahad Shahbaz ;
Felsberg, Michael .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOP (ICCVW), 2015, :621-629
[3]   The Visual Object Tracking VOT2015 challenge results [J].
Kristan, Matej ;
Matas, Jiri ;
Leonardis, Ales ;
Felsberg, Michael ;
Cehovin, Luka ;
Fernandez, Gustavo ;
Vojir, Tomas ;
Hager, Gustav ;
Nebehay, Georg ;
Pflugfelder, Roman ;
Gupta, Abhinav ;
Bibi, Adel ;
Lukezic, Alan ;
Garcia-Martins, Alvaro ;
Saffari, Amir ;
Petrosino, Alfredo ;
Montero, Andres Solis ;
Varfolomieiev, Anton ;
Baskurt, Atilla ;
Zhao, Baojun ;
Ghanem, Bernard ;
Martinez, Brais ;
Lee, ByeongJu ;
Han, Bohyung ;
Wang, Chaohui ;
Garcia, Christophe ;
Zhang, Chunyuan ;
Schmid, Cordelia ;
Tao, Dacheng ;
Kim, Daijin ;
Huang, Dafei ;
Prokhorov, Danil ;
Du, Dawei ;
Yeung, Dit-Yan ;
Ribeiro, Eraldo ;
Khan, Fahad Shahbaz ;
Porikli, Fatih ;
Bunyak, Filiz ;
Zhu, Gao ;
Seetharaman, Guna ;
Kieritz, Hilke ;
Yau, Hing Tuen ;
Li, Hongdong ;
Qi, Honggang ;
Bischof, Horst ;
Possegger, Horst ;
Lee, Hyemin ;
Nam, Hyeonseob ;
Bogun, Ivan ;
Jeong, Jae-chan .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOP (ICCVW), 2015, :564-586
[4]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90
[5]   A Survey of Appearance Models in Visual Object Tracking [J].
Li, Xi ;
Hu, Weiming ;
Shen, Chunhua ;
Zhang, Zhongfei ;
Dick, Anthony ;
Van den Hengel, Anton .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2013, 4 (04)
[6]   Hierarchical Convolutional Features for Visual Tracking [J].
Ma, Chao ;
Huang, Jia-Bin ;
Yang, Xiaokang ;
Yang, Ming-Hsuan .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :3074-3082
[7]   Learning Multi-Domain Convolutional Neural Networks for Visual Tracking [J].
Nam, Hyeonseob ;
Han, Bohyung .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :4293-4302
[8]   Locally Orderless Tracking [J].
Oron, Shaul ;
Bar-Hillel, Aharon ;
Levi, Dan ;
Avidan, Shai .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2015, 111 (02) :213-228
[9]   Incremental learning for robust visual tracking [J].
Ross, David A. ;
Lim, Jongwoo ;
Lin, Ruei-Sung ;
Yang, Ming-Hsuan .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2008, 77 (1-3) :125-141
[10]   ImageNet Large Scale Visual Recognition Challenge [J].
Russakovsky, Olga ;
Deng, Jia ;
Su, Hao ;
Krause, Jonathan ;
Satheesh, Sanjeev ;
Ma, Sean ;
Huang, Zhiheng ;
Karpathy, Andrej ;
Khosla, Aditya ;
Bernstein, Michael ;
Berg, Alexander C. ;
Fei-Fei, Li .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2015, 115 (03) :211-252