Quantitative Trait Locus Mapping Methods for Diversity Outbred Mice

被引:158
作者
Gatti, Daniel M. [1 ]
Svenson, Karen L. [1 ]
Shabalin, Andrey [2 ]
Wu, Long-Yang [1 ]
Valdar, William [3 ,4 ]
Simecek, Petr [1 ]
Goodwin, Neal [1 ]
Cheng, Riyan [7 ]
Pomp, Daniel [3 ]
Palmer, Abraham [5 ]
Chesler, Elissa J. [1 ]
Broman, Karl W. [6 ]
Churchill, Gary A. [1 ]
机构
[1] Jackson Lab, Bar Harbor, ME 04609 USA
[2] Virginia Commonwealth Univ, Coll Med, Richmond, VA 23298 USA
[3] Univ N Carolina, Dept Genet, Chapel Hill, NC 27599 USA
[4] Univ N Carolina, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27599 USA
[5] Univ Chicago, Dept Human Genet, Chicago, IL 60637 USA
[6] Univ Wisconsin, Dept Biostat & Med Informat, Madison, WI 53706 USA
[7] Australian Natl Univ, Res Sch Biol, Div Plant Sci, Canberra, ACT 0200, Australia
基金
美国国家卫生研究院;
关键词
diversity outbred; haplotype reconstruction; quantitative trait locus mapping; Multiparent Advanced Generation Inter-Cross (MAGIC); multiparental populations; MPP; GENOME-WIDE ASSOCIATION; COLLABORATIVE CROSS; HETEROGENEOUS STOCK; LABORATORY MOUSE; COMPLEX TRAITS; LINKAGE MAPS; POPULATION; RELATEDNESS; PERMUTATION; GENOTYPE;
D O I
10.1534/g3.114.013748
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Genetic mapping studies in the mouse and other model organisms are used to search for genes underlying complex phenotypes. Traditional genetic mapping studies that employ single-generation crosses have poor mapping resolution and limit discovery to loci that are polymorphic between the two parental strains. Multiparent outbreeding populations address these shortcomings by increasing the density of recombination events and introducing allelic variants from multiple founder strains. However, multiparent crosses present new analytical challenges and require specialized software to take full advantage of these benefits. Each animal in an outbreeding population is genetically unique and must be genotyped using a high-density marker set; regression models for mapping must accommodate multiple founder alleles, and complex breeding designs give rise to polygenic covariance among related animals that must be accounted for in mapping analysis. The Diversity Outbred (DO) mice combine the genetic diversity of eight founder strains in a multigenerational breeding design that has been maintained for >16 generations. The large population size and randomized mating ensure the long-term genetic stability of this population. We present a complete analytical pipeline for genetic mapping in DO mice, including algorithms for probabilistic reconstruction of founder haplotypes from genotyping array intensity data, and mapping methods that accommodate multiple founder haplotypes and account for relatedness among animals. Power analysis suggests that studies with as few as 200 DO mice can detect loci with large effects, but loci that account for <5% of trait variance may require a sample size of up to 1000 animals. The methods described here are implemented in the freely available R package DOQTL.
引用
收藏
页码:1623 / 1633
页数:11
相关论文
共 48 条
[21]  
Fu C., 2012, ACM BCB 2012
[22]   Bioconductor: open software development for computational biology and bioinformatics [J].
Gentleman, RC ;
Carey, VJ ;
Bates, DM ;
Bolstad, B ;
Dettling, M ;
Dudoit, S ;
Ellis, B ;
Gautier, L ;
Ge, YC ;
Gentry, J ;
Hornik, K ;
Hothorn, T ;
Huber, W ;
Iacus, S ;
Irizarry, R ;
Leisch, F ;
Li, C ;
Maechler, M ;
Rossini, AJ ;
Sawitzki, G ;
Smith, C ;
Smyth, G ;
Tierney, L ;
Yang, JYH ;
Zhang, JH .
GENOME BIOLOGY, 2004, 5 (10)
[23]   A SIMPLE REGRESSION METHOD FOR MAPPING QUANTITATIVE TRAIT LOCI IN LINE CROSSES USING FLANKING MARKERS [J].
HALEY, CS ;
KNOTT, SA .
HEREDITY, 1992, 69 :315-324
[24]  
HITZEMANN B, 1994, J PHARMACOL EXP THER, V271, P969
[25]   Genetic diversity and striatal gene networks: focus on the heterogeneous stock-collaborative cross (HS-CC) mouse [J].
Iancu, Ovidiu D. ;
Darakjian, Priscila ;
Walter, Nicole A. R. ;
Malmanger, Barry ;
Oberbeck, Denesa ;
Belknap, John ;
McWeeney, Shannon ;
Hitzemann, Robert .
BMC GENOMICS, 2010, 11
[26]   The Genome Architecture of the Collaborative Cross Mouse Genetic Reference Population [J].
Iraqi, Fuad A. ;
Mahajne, Mustafa ;
Salaymah, Yasser ;
Sandovski, Hani ;
Tayem, Hanna ;
Vered, Karin ;
Balmer, Lois ;
Hall, Michael ;
Manship, Glynn ;
Morahan, Grant ;
Pettit, Ken ;
Scholten, Jeremy ;
Tweedie, Kathryn ;
Wallace, Andrew ;
Weerasekera, Lakshini ;
Cleak, James ;
Durrant, Caroline ;
Goodstadt, Leo ;
Mott, Richard ;
Yalcin, Binnaz ;
Aylor, David L. ;
Baric, Ralph S. ;
Bell, Timothy A. ;
Bendt, Katharine M. ;
Brennan, Jennifer ;
Brooks, Jackie D. ;
Buus, Ryan J. ;
Crowley, James J. ;
Calaway, John D. ;
Calaway, Mark E. ;
Cholka, Agnieszka ;
Darr, David B. ;
Didion, John P. ;
Dorman, Amy ;
Everett, Eric T. ;
Ferris, Martin T. ;
Mathes, Wendy Foulds ;
Fu, Chen-Ping ;
Gooch, Terry J. ;
Goodson, Summer G. ;
Gralinski, Lisa E. ;
Hansen, Stephanie D. ;
Heise, Mark T. ;
Hoel, Jane ;
Hua, Kunjie ;
Kapita, Mayanga C. ;
Lee, Seunggeun ;
Lenarcic, Alan B. ;
Liu, Eric Yi ;
Liu, Hedi .
GENETICS, 2012, 190 (02) :389-U159
[27]   Efficient control of population structure in model organism association mapping [J].
Kang, Hyun Min ;
Zaitlen, Noah A. ;
Wade, Claire M. ;
Kirby, Andrew ;
Heckerman, David ;
Daly, Mark J. ;
Eskin, Eleazar .
GENETICS, 2008, 178 (03) :1709-1723
[28]   Mouse genomic variation and its effect on phenotypes and gene regulation [J].
Keane, Thomas M. ;
Goodstadt, Leo ;
Danecek, Petr ;
White, Michael A. ;
Wong, Kim ;
Yalcin, Binnaz ;
Heger, Andreas ;
Agam, Avigail ;
Slater, Guy ;
Goodson, Martin ;
Furlotte, Nicholas A. ;
Eskin, Eleazar ;
Nellaker, Christoffer ;
Whitley, Helen ;
Cleak, James ;
Janowitz, Deborah ;
Hernandez-Pliego, Polinka ;
Edwards, Andrew ;
Belgard, T. Grant ;
Oliver, Peter L. ;
McIntyre, Rebecca E. ;
Bhomra, Amarjit ;
Nicod, Jerome ;
Gan, Xiangchao ;
Yuan, Wei ;
van der Weyden, Louise ;
Steward, Charles A. ;
Bala, Sendu ;
Stalker, Jim ;
Mott, Richard ;
Durbin, Richard ;
Jackson, Ian J. ;
Czechanski, Anne ;
Guerra-Assuncao, Jose Afonso ;
Donahue, Leah Rae ;
Reinholdt, Laura G. ;
Payseur, Bret A. ;
Ponting, Chris P. ;
Birney, Ewan ;
Flint, Jonathan ;
Adams, David J. .
NATURE, 2011, 477 (7364) :289-294
[29]   Genetic dissection of a model complex trait using the Drosophila Synthetic Population Resource [J].
King, Elizabeth G. ;
Merkes, Chris M. ;
McNeil, Casey L. ;
Hoofer, Steven R. ;
Sen, Saunak ;
Broman, Karl W. ;
Long, Anthony D. ;
Macdonald, Stuart J. .
GENOME RESEARCH, 2012, 22 (08) :1558-1566
[30]   A Multiparent Advanced Generation Inter-Cross to Fine-Map Quantitative Traits in Arabidopsis thaliana [J].
Kover, Paula X. ;
Valdar, William ;
Trakalo, Joseph ;
Scarcelli, Nora ;
Ehrenreich, Ian M. ;
Purugganan, Michael D. ;
Durrant, Caroline ;
Mott, Richard .
PLOS GENETICS, 2009, 5 (07)