Quantitative Trait Locus Mapping Methods for Diversity Outbred Mice

被引:158
作者
Gatti, Daniel M. [1 ]
Svenson, Karen L. [1 ]
Shabalin, Andrey [2 ]
Wu, Long-Yang [1 ]
Valdar, William [3 ,4 ]
Simecek, Petr [1 ]
Goodwin, Neal [1 ]
Cheng, Riyan [7 ]
Pomp, Daniel [3 ]
Palmer, Abraham [5 ]
Chesler, Elissa J. [1 ]
Broman, Karl W. [6 ]
Churchill, Gary A. [1 ]
机构
[1] Jackson Lab, Bar Harbor, ME 04609 USA
[2] Virginia Commonwealth Univ, Coll Med, Richmond, VA 23298 USA
[3] Univ N Carolina, Dept Genet, Chapel Hill, NC 27599 USA
[4] Univ N Carolina, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27599 USA
[5] Univ Chicago, Dept Human Genet, Chicago, IL 60637 USA
[6] Univ Wisconsin, Dept Biostat & Med Informat, Madison, WI 53706 USA
[7] Australian Natl Univ, Res Sch Biol, Div Plant Sci, Canberra, ACT 0200, Australia
基金
美国国家卫生研究院;
关键词
diversity outbred; haplotype reconstruction; quantitative trait locus mapping; Multiparent Advanced Generation Inter-Cross (MAGIC); multiparental populations; MPP; GENOME-WIDE ASSOCIATION; COLLABORATIVE CROSS; HETEROGENEOUS STOCK; LABORATORY MOUSE; COMPLEX TRAITS; LINKAGE MAPS; POPULATION; RELATEDNESS; PERMUTATION; GENOTYPE;
D O I
10.1534/g3.114.013748
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Genetic mapping studies in the mouse and other model organisms are used to search for genes underlying complex phenotypes. Traditional genetic mapping studies that employ single-generation crosses have poor mapping resolution and limit discovery to loci that are polymorphic between the two parental strains. Multiparent outbreeding populations address these shortcomings by increasing the density of recombination events and introducing allelic variants from multiple founder strains. However, multiparent crosses present new analytical challenges and require specialized software to take full advantage of these benefits. Each animal in an outbreeding population is genetically unique and must be genotyped using a high-density marker set; regression models for mapping must accommodate multiple founder alleles, and complex breeding designs give rise to polygenic covariance among related animals that must be accounted for in mapping analysis. The Diversity Outbred (DO) mice combine the genetic diversity of eight founder strains in a multigenerational breeding design that has been maintained for >16 generations. The large population size and randomized mating ensure the long-term genetic stability of this population. We present a complete analytical pipeline for genetic mapping in DO mice, including algorithms for probabilistic reconstruction of founder haplotypes from genotyping array intensity data, and mapping methods that accommodate multiple founder haplotypes and account for relatedness among animals. Power analysis suggests that studies with as few as 200 DO mice can detect loci with large effects, but loci that account for <5% of trait variance may require a sample size of up to 1000 animals. The methods described here are implemented in the freely available R package DOQTL.
引用
收藏
页码:1623 / 1633
页数:11
相关论文
共 48 条
[1]   Combined sequence-based and genetic mapping analysis of complex traits in outbred rats [J].
Baud, Amelie ;
Hermsen, Roel ;
Guryev, Victor ;
Stridh, Pernilla ;
Graham, Delyth ;
McBride, Martin W. ;
Foroud, Tatiana ;
Calderari, Sophie ;
Diez, Margarita ;
Ockinger, Johan ;
Beyeen, Amennai D. ;
Gillett, Alan ;
Abdelmagid, Nada ;
Guerreiro-Cacais, Andre Ortlieb ;
Jagodic, Maja ;
Tuncel, Jonatan ;
Norin, Ulrika ;
Beattie, Elisabeth ;
Ngan Huynh ;
Miller, William H. ;
Koller, Daniel L. ;
Alam, Imranul ;
Falak, Samreen ;
Osborne-Pellegrin, Mary ;
Martinez-Membrives, Esther ;
Canete, Toni ;
Blazquez, Gloria ;
Vicens-Costa, Elia ;
Mont-Cardona, Carme ;
Diaz-Moran, Sira ;
Tobena, Adolf ;
Hummel, Oliver ;
Zelenika, Diana ;
Saar, Kathrin ;
Patone, Giannino ;
Bauerfeind, Anja ;
Bihoreau, Marie-Therese ;
Heinig, Matthias ;
Lee, Young-Ae ;
Rintisch, Carola ;
Schulz, Herbert ;
Wheeler, David A. ;
Worley, Kim C. ;
Muzny, Donna M. ;
Gibbs, Richard A. ;
Lathrop, Mark ;
Lansu, Nico ;
Toonen, Pim ;
Ruzius, Frans Paul ;
de Bruijn, Ewart .
NATURE GENETICS, 2013, 45 (07) :767-+
[2]   A MAXIMIZATION TECHNIQUE OCCURRING IN STATISTICAL ANALYSIS OF PROBABILISTIC FUNCTIONS OF MARKOV CHAINS [J].
BAUM, LE ;
PETRIE, T ;
SOULES, G ;
WEISS, N .
ANNALS OF MATHEMATICAL STATISTICS, 1970, 41 (01) :164-&
[3]   Patterns of Recombination Activity on Mouse Chromosome 11 Revealed by High Resolution Mapping [J].
Billings, Timothy ;
Sargent, Evelyn E. ;
Szatkiewicz, Jin P. ;
Leahy, Nicole ;
Kwak, Il-Youp ;
Bektassova, Nazira ;
Walker, Michael ;
Hassold, Terry ;
Graber, Joel H. ;
Broman, Karl W. ;
Petkov, Petko M. .
PLOS ONE, 2010, 5 (12)
[4]   The X chromosome in quantitative trait locus mapping [J].
Broman, Karl W. ;
Sen, Saunak ;
Owens, Sarah E. ;
Manichaikul, Ani ;
Southard-Smith, E. Michelle ;
Churchill, Gary A. .
GENETICS, 2006, 174 (04) :2151-2158
[5]   Haplotype Probabilities in Advanced Intercross Populations [J].
Broman, Karl W. .
G3-GENES GENOMES GENETICS, 2012, 2 (02) :199-202
[6]   Chapter 11: Genome-Wide Association Studies [J].
Bush, William S. ;
Moore, Jason H. .
PLOS COMPUTATIONAL BIOLOGY, 2012, 8 (12)
[7]   Practical Considerations Regarding the Use of Genotype and Pedigree Data to Model Relatedness in the Context of Genome-Wide Association Studies [J].
Cheng, Riyan ;
Parker, Clarissa C. ;
Abney, Mark ;
Palmer, Abraham A. .
G3-GENES GENOMES GENETICS, 2013, 3 (10) :1861-1867
[8]   A Simulation Study of Permutation, Bootstrap, and Gene Dropping for Assessing Statistical Significance in the Case of Unequal Relatedness [J].
Cheng, Riyan ;
Palmer, Abraham A. .
GENETICS, 2013, 193 (03) :1015-+
[9]   QTLRel: an R Package for Genome-wide Association Studies in which Relatedness is a Concern [J].
Cheng, Riyan ;
Abney, Mark ;
Palmer, Abraham A. ;
Skol, Andrew D. .
BMC GENETICS, 2011, 12
[10]   Genome-Wide Association Studies and the Problem of Relatedness Among Advanced Intercross Lines and Other Highly Recombinant Populations [J].
Cheng, Riyan ;
Lim, Jackie E. ;
Samocha, Kaitlin E. ;
Sokoloff, Greta ;
Abney, Mark ;
Skol, Andrew D. ;
Palmer, Abraham A. .
GENETICS, 2010, 185 (03) :1033-1044