Remainder Terms in the Fractional Sobolev Inequality

被引:47
作者
Chen, Shibing [1 ]
Frank, Rupert L. [2 ]
Weth, Tobias [3 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
[2] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[3] Goethe Univ Frankfurt, Inst Math, D-60054 Frankfurt, Germany
基金
美国国家科学基金会;
关键词
Sobolev inequality; stability; fractional Laplacian; HARDY-LITTLEWOOD-SOBOLEV; SHARP;
D O I
10.1512/iumj.2013.62.5065
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the fractional Sobolev inequality for the embedding H-s/2(R-N) hooked right arrow L2N/(N-s)(R-N), S is an element of (0, N) can be sharpened by adding a remainder term proportional to the distance to the set of optimizers. As a corollary, we derive the existence of a remainder term in the weak LN/(N-s)-norm for functions supported in a domain of finite measure. Our results generalize earlier work for the non-fractional case where S is an even integer.
引用
收藏
页码:1381 / 1397
页数:17
相关论文
共 50 条
  • [11] WEIGHTED SOBOLEV INEQUALITY
    LONG, RL
    NIE, FS
    [J]. CHINESE SCIENCE BULLETIN, 1992, 37 (04): : 278 - 280
  • [12] Remainder terms for several inequalities on some groups of Heisenberg-type
    Liu HePing
    Zhang An
    [J]. SCIENCE CHINA-MATHEMATICS, 2015, 58 (12) : 2565 - 2580
  • [13] SOBOLEV INEQUALITY ON RIEMANNIAN MANIFOLDS
    WANG MENG Department of Mathematics
    School of Mathematical Sciences
    [J]. ChineseAnnalsofMathematics, 2005, (04) : 164 - 171
  • [14] The Sobolev inequality on the torus revisited
    Benyi, Arpad
    Oh, Tadahiro
    [J]. PUBLICATIONES MATHEMATICAE DEBRECEN, 2013, 83 (03): : 359 - 374
  • [15] Stability for the logarithmic Sobolev inequality
    Brigati, Giovanni
    Dolbeault, Jean
    Simonov, Nikita
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 287 (08)
  • [16] A NOTE ON THE SOBOLEV TRACE INEQUALITY
    Ho, Pak Tung
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (03) : 1257 - 1267
  • [17] SHARP CONSTANT IN A SOBOLEV INEQUALITY
    WANG, XJ
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1993, 20 (03) : 261 - 268
  • [18] Equality in the logarithmic Sobolev inequality
    Ohta, Shin-ichi
    Takatsu, Asuka
    [J]. MANUSCRIPTA MATHEMATICA, 2020, 162 (1-2) : 271 - 282
  • [19] On a Sobolev-type inequality
    Alvino, Angelo
    [J]. RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2009, 20 (04) : 379 - 386
  • [20] Sobolev inequality on Riemannian manifolds
    Wang, M
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2005, 26 (04) : 651 - 658