Remainder Terms in the Fractional Sobolev Inequality

被引:46
|
作者
Chen, Shibing [1 ]
Frank, Rupert L. [2 ]
Weth, Tobias [3 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
[2] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[3] Goethe Univ Frankfurt, Inst Math, D-60054 Frankfurt, Germany
基金
美国国家科学基金会;
关键词
Sobolev inequality; stability; fractional Laplacian; HARDY-LITTLEWOOD-SOBOLEV; SHARP;
D O I
10.1512/iumj.2013.62.5065
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the fractional Sobolev inequality for the embedding H-s/2(R-N) hooked right arrow L2N/(N-s)(R-N), S is an element of (0, N) can be sharpened by adding a remainder term proportional to the distance to the set of optimizers. As a corollary, we derive the existence of a remainder term in the weak LN/(N-s)-norm for functions supported in a domain of finite measure. Our results generalize earlier work for the non-fractional case where S is an even integer.
引用
收藏
页码:1381 / 1397
页数:17
相关论文
共 50 条
  • [1] On a Sobolev inequality with remainder terms
    Lu, GZ
    Wei, JC
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (01) : 75 - 84
  • [2] Remainder terms of a nonlocal Sobolev inequality
    Deng, Shengbing
    Tian, Xingliang
    Yang, Minbo
    Zhao, Shunneng
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (05) : 1652 - 1667
  • [3] Remainder terms in a higher order Sobolev inequality
    Gazzola, Filippo
    Weth, Tobias
    ARCHIV DER MATHEMATIK, 2010, 95 (04) : 381 - 388
  • [4] Remainder terms in a higher order Sobolev inequality
    Filippo Gazzola
    Tobias Weth
    Archiv der Mathematik, 2010, 95 : 381 - 388
  • [5] On a Sobolev inequality with remainder terms in the Grushin plane
    Yang, Qiaohua
    Su, Dan
    Kong, Yinying
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 412 (01) : 360 - 368
  • [6] SOBOLEV INEQUALITIES WITH REMAINDER TERMS
    BREZIS, H
    LIEB, EH
    JOURNAL OF FUNCTIONAL ANALYSIS, 1985, 62 (01) : 73 - 86
  • [7] FRACTIONAL HARDY INEQUALITY WITH A REMAINDER TERM
    Dyda, Bartlomiej
    COLLOQUIUM MATHEMATICUM, 2011, 122 (01) : 59 - 67
  • [8] Sharp Sobolev inequalities with lower order remainder terms
    Druet, O
    Hebey, E
    Vaugon, M
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 353 (01) : 269 - 289
  • [9] Hardy–Sobolev inequalities for the biharmonic operator with remainder terms
    Tommaso Passalacqua
    Bernhard Ruf
    Journal of Fixed Point Theory and Applications, 2014, 15 : 405 - 431
  • [10] Trudinger-Moser inequality with remainder terms
    Tintarev, Cyril
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (01) : 55 - 66