Gradient Estimates for a Nonlinear Diffusion Equation on Complete Manifolds

被引:0
作者
Wu, Jiaxian [1 ]
Ruan, Qihua [2 ]
Yang, Yihu [3 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Jiangsu, Peoples R China
[2] Putian Univ, Dept Math, Fujian 351100, Peoples R China
[3] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Gradient estimate; Bakry-Emery Ricci curvature; Nonlinear diffusion equation; PARABOLIC EQUATION; THEOREM;
D O I
10.1007/s11401-015-0922-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with the gradient estimates of the Hamilton type for the positive solutions to the following nonlinear diffusion equation: u(t) = Delta u + del phi . del u + a(x)u ln u + b(x)u on a complete noncompact Riemannian manifold with a Bakry-Emery Ricci curvature bounded below by -K (K >= 0), where phi is a C-2 function, a(x) and b(x) are C-1 functions with certain conditions.
引用
收藏
页码:1011 / 1018
页数:8
相关论文
共 12 条
[1]  
Bakry D., 1985, SEM PROB 19, V1123, P177
[2]  
Hamilton R. S., 1993, COMMUN ANAL GEOM, V1, P113
[3]  
LI JY, 1991, J FUNCT ANAL, V100, P233
[4]   ON THE PARABOLIC KERNEL OF THE SCHRODINGER OPERATOR [J].
LI, P ;
YAU, ST .
ACTA MATHEMATICA, 1986, 156 (3-4) :153-201
[5]   Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds [J].
Li, XD .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2005, 84 (10) :1295-1361
[6]   Gradient estimates for a simple elliptic equation on complete non-compact Riemannian manifolds [J].
Ma, Li .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 241 (01) :374-382
[7]   Hamilton-type gradient estimates for a nonlinear parabolic equation on Riemannian manifolds [J].
Qian, Bin .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (06) :1071-1078
[8]   A comparison theorem for an elliptic operator [J].
Qian, ZM .
POTENTIAL ANALYSIS, 1998, 8 (02) :137-142
[9]   Elliptic-type gradient estimate for Schrodinger equations on noncompact manifolds [J].
Ruan, Qihua .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2007, 39 :982-988
[10]   Sharp gradient estimate and Yau's Liouville theorem for the heat equation on noncompact manifolds [J].
Souplet, Philippe ;
Zhang, Qi S. .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2006, 38 :1045-1053