Devaney's chaos of a relay system

被引:27
作者
Akhmet, M. U. [1 ,2 ]
机构
[1] Middle E Tech Univ, Dept Math, TR-06531 Ankara, Turkey
[2] Middle E Tech Univ, Inst Appl Math, TR-06531 Ankara, Turkey
关键词
Differential equations with a pulse function; Hyperbolic system; Non-autonomous chaos; Devaney's ingredients of chaos; Chaotic attractor;
D O I
10.1016/j.cnsns.2008.03.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We address the differential equation with a pulse function, whose moments of discontinuity depend on the initial moment. The existence of a chaotic attractor, and the complex behavior of all solutions are investigated. An appropriate simulations are presented. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1486 / 1493
页数:8
相关论文
共 21 条
[1]   On the reduction principle for differential equations with piecewise constant argument of generalized type [J].
Akhmet, M. U. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 336 (01) :646-663
[2]  
Andronov AA, 1949, THEORY OSCILLATIONS
[3]  
[Anonymous], INTRO CHAOTIC DYNAMI
[4]  
[Anonymous], 1964, SAMPLING SYSTEMS THE
[5]  
[Anonymous], 2003, Bifurcation and Chaos in Nonsmooth Mechanical Systems World Scientific Series on Nonlinear Science Series A
[6]  
[Anonymous], THEORY NONLINEAR CON
[7]  
[Anonymous], 2008, GLOBAL TRANSVERSALIT
[8]  
[Anonymous], 1964, SAMPLING SYSTEMS THE
[9]   THE DOUBLE SCROLL FAMILY .1. RIGOROUS PROOF OF CHAOS [J].
CHUA, LO ;
KOMURO, M ;
MATSUMOTO, T .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1986, 33 (11) :1072-1097
[10]  
Hammel S. M., 1987, Journal of Complexity, V3, P136, DOI 10.1016/0885-064X(87)90024-0