Geometrically distinct solutions for quasilinear elliptic equations

被引:8
作者
Wu, Xian [1 ]
Wu, Ke [2 ,3 ]
机构
[1] Yunnan Normal Univ, Dept Math, Kunming 650092, Yunnan, Peoples R China
[2] Yunnan Univ, Dept Math & Stat, Kunming 650091, Yunnan, Peoples R China
[3] Zhaotong Univ, Dept Math, Zhaotong 657000, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
quasilinear elliptic equation; geometrically; distinct solution; critical point; SCHRODINGER-EQUATIONS; SOLITON-SOLUTIONS; EXISTENCE;
D O I
10.1088/0951-7715/27/5/987
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study quasilinear elliptic equations -Sigma(N)(i,j=1) D-j(a(i,j)(x, u)D(i)u) + 1/2 Sigma(N)(i,j=1) D(s)a(i,j)(x,u)D(i)uD(j)u + V(x)u = g(x,u), x is an element of R-N, where D-i = partial derivative/partial derivative x(i), D(s)a(ij) (x, s) = partial derivative/partial derivative s a(ij)(x, s), g is an element of C(R-N x R, R) and V is an element of C(R-N, R). Using some special techniques, an existence theorem for infinitely many pairs +/- u of geometrically distinct solutions is given.
引用
收藏
页码:987 / 1001
页数:15
相关论文
共 29 条
[1]   Uniqueness of the ground state solutions of quasilinear Schrodinger equations [J].
Adachi, Shinji ;
Watanabe, Tatsuya .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (02) :819-833
[2]  
[Anonymous], 1996, VARIATIONAL METHODS, DOI DOI 10.1007/978-3-662-03212-1
[3]   Soliton solutions for quasilinear Schrodinger equations with critical growth [J].
Bezerra do O, Joao M. ;
Miyagaki, Olimpio H. ;
Soares, Sergio H. M. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (04) :722-744
[4]   Solutions for a quasilinear Schrodinger equation: a dual approach [J].
Colin, M ;
Jeanjean, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (02) :213-226
[5]   Global existence of small solutions to a relativistic nonlinear Schrodinger equation [J].
deBouard, A ;
Hayashi, N ;
Saut, JC .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 189 (01) :73-105
[6]   Solitary waves for a class of quasilinear Schrodinger equations in dimension two [J].
do O, Joao Marcos ;
Severo, Uberlandio .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 38 (3-4) :275-315
[7]   Soliton solutions for quasilinear Schrodinger equations:: The critical exponential case [J].
do O, Jodo M. B. ;
Miyagaki, Olimpio H. ;
Soares, Sergio H. M. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (12) :3357-3372
[8]   Multiple solutions for a quasilinear Schrodinger equation [J].
Fang, Xiang-Dong ;
Szulkin, Andrzej .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (04) :2015-2032
[9]   On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on RN [J].
Jeanjean, L .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1999, 129 :787-809
[10]  
Kryszewski A., 1998, Adv. Differ. Equ, V3, P441, DOI DOI 10.57262/ADE/1366399849