1-Soliton solution of 1+2 dimensional nonlinear Schrodinger's equation in power law media

被引:24
作者
Biswas, Anjan [1 ]
机构
[1] Delaware State Univ, Ctr Res & Educ Opt Sci & Applicat, Dept Appl Math & Theoret Phys, Dover, DE 19901 USA
关键词
Optical solitons; Power law; Integrals of motion; Inverse scattering; SOLITONS; STABILITY;
D O I
10.1016/j.cnsns.2008.08.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper obtains the 1-soliton solution of the nonlinear Schrodinger's equation in 1 + 2 dimensions for parabolic law nonlinearity. An exact soliton solution is obtained in closed form by the solitary wave ansatze. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1830 / 1833
页数:4
相关论文
共 10 条
[1]  
Ablowitz MJ., 1981, SOLITONS INVERSE SCA, DOI DOI 10.1137/1.9781611970883
[2]   Hamiltonian-versus-energy diagrams in soliton theory [J].
Akhmediev, N ;
Ankiewicz, A ;
Grimshaw, R .
PHYSICAL REVIEW E, 1999, 59 (05) :6088-6096
[3]   Quasi-stationary optical solitons with power law nonlinearity [J].
Biswas, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (16) :4581-4589
[4]   Solitons and their stability in high dispersive systems .1. Fourth-order nonlinear Schrodinger-type equations with power-law nonlinearities [J].
Karpman, VI ;
Shagalov, AG .
PHYSICS LETTERS A, 1997, 228 (1-2) :59-65
[5]   Analytical studies of the steady solution for optical soliton equation with higher-order dispersion and nonlinear effects [J].
Lin, Chang ;
Hong, Xue-Ren ;
Dou, Fu-Quan .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2008, 13 (03) :567-574
[6]  
Sulem C, 1999, The Nonlinear Schrodinger Equation: Self-Focusing and Wave Collapse
[7]   Chaotic soliton walk in periodically modulated media [J].
Turaev, Dmitry ;
Radziunas, Mindaugas ;
Vladimirov, Andrei G. .
PHYSICAL REVIEW E, 2008, 77 (06)
[8]   Compactons, solitons and periodic solutions for some forms of nonlinear Klein-Gordon equations [J].
Wazwaz, AM .
CHAOS SOLITONS & FRACTALS, 2006, 28 (04) :1005-1013
[9]   Stability and evolution of solitary waves in perturbed generalized nonlinear Schrodinger equations [J].
Yang, JK ;
Kaup, DJ .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2000, 60 (03) :967-989
[10]  
ZHIDKOV PE, 2001, KORTEWEG DE VRIES NO