Conserving properties in constrained dynamics of flexible multibody systems

被引:1
作者
Orden, JCG [1 ]
Goicolea, JM [1 ]
机构
[1] Univ Politecn Madrid, Dept Mecan Medios Continuos & Teor Estruturas, ETS Ingn Caminos Canales & Puertos, E-28040 Madrid, Spain
关键词
multibody; flexible; non-linear dynamics; penalty; energy-momentum;
D O I
10.1023/A:1009871728414
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The context of this work is the non-linear dynamics of multibody systems (MBS). The approach followed for parametrisation of rigid bodies is the use of inertial coordinates, forming a dependent set of parameters. This approach mixes naturally with nodal coordinates in a displacement-based finite element discretisation of flexible bodies, allowing an efficient simulation for MBS dynamics. An energy-momentum time integration algorithm is developed within the context of MBS constraints enforced through penalty methods. The approach follows the concept of a discrete derivative for Hamiltonian systems proposed by Gonzalez, achieving exact preservation of energy and momentum. The algorithm displays considerable stability, overcoming the traditional drawback of the penalty method, namely numerical ill-conditioning that leads to stiff equation systems. Additionally, excellent performance is achieved in long-term simulations with rather large time-steps.
引用
收藏
页码:225 / 244
页数:20
相关论文
共 9 条
[1]  
ARMERO F, 1997, COMPUTATIONAL PLASTI, V1, P865
[2]  
Crisfield MA, 1997, NONLINEAR FINITE ELE, V2
[3]  
Garcia de Jalon J., 1994, KINEMATIC DYNAMIC SI
[4]  
GOICOLEA JM, IN PRESS COMPUT METH
[5]  
Gonzalez O, 1996, THESIS STANFORD U
[6]  
Laursen TA, 1997, INT J NUMER METH ENG, V40, P863, DOI 10.1002/(SICI)1097-0207(19970315)40:5<863::AID-NME92>3.0.CO
[7]  
2-V
[8]  
ORDEN JG, 1999, THESIS ETSI CAMINOS
[9]   THE DISCRETE ENERGY-MOMENTUM METHOD - CONSERVING ALGORITHMS FOR NONLINEAR ELASTODYNAMICS [J].
SIMO, JC ;
TARNOW, N .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1992, 43 (05) :757-792