Visible-light-driven CO2 photoreduction over ZnxCd1-xS solid solution coupling with tetra(4-carboxyphenyl)porphyrin iron(iii) chloride

被引:25
作者
Li, Pan [1 ,2 ]
Zhang, Xuehua [1 ]
Hou, Chunchao [3 ]
Lin, Lin [1 ]
Chen, Yong [2 ]
He, Tao [1 ,2 ]
机构
[1] Natl Ctr Nanosci & Technol, CAS Ctr Excellence Nanosci, CAS Key Lab Nanosyst & Hierarch Fabricat, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Tech Inst Phys & Chem, Key Lab Photochem Convers & Optoelect Mat, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
PHOTOCATALYTIC REDUCTION; DEGRADATION; NANORODS; BANDGAP; SYSTEMS; TIO2;
D O I
10.1039/c8cp02774a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Construction of solid solution semiconductors has attracted much attention in photocatalysis by virtue of their tunable elemental composition and band structure. The integration of semiconductor sensitizers with molecular catalysts provides a promising way to fabricate highly efficient, selective and stable systems for CO2 photoreduction. Here ZnxCd1-xS (ZCS) solid solutions with a well-defined floccule-like morphology composed of nanoribbons are synthesized and used as the photosensitizer to couple with tetra(4-carboxyphenyl)porphyrin iron(iii) chloride (FeTCPP) for CO2 reduction. The effects of changes in surface atoms of the ZCS solid solution on the performance of CO2 photoreduction are investigated. Regardless of the presence of FeTCPP, our results show that the introduction of Zn into CdS can affect the activity and selectivity of CO2 photoreduction, as well as the stability of the obtained photocatalysts. More importantly, the presence of Zn can build efficient electron transfer channels from ZCS to FeTCPP and, thus, greatly facilitate the interfacial charge transfer. Benefitting from the efficient charge separation and electron transfer, ZCS-1/FeTCPP (Zn0.14Cd0.84S/FeTCPP) exhibits the highest activity for CO2 reduction under visible-light irradiation, with a CO yield of 1.28 mol and a selectivity up to 93% after 4 h.
引用
收藏
页码:16985 / 16991
页数:7
相关论文
共 33 条
[1]   Solvothermal Synthesis of High-Aspect Ratio Alloy Semiconductor Nanowires: Cd1-xZnxS, a Case Study [J].
Biswas, Subhajit ;
Kar, Soumitra ;
Santra, Swadeshmukul ;
Jompol, Y. ;
Arif, M. ;
Khondaker, Saiful I. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (09) :3617-3624
[2]   Selective and Efficient Photocatalytic CO2 Reduction to CO Using Visible Light and an Iron-Based Homogeneous Catalyst [J].
Bonin, Julien ;
Robert, Marc ;
Routier, Mathilde .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (48) :16768-16771
[3]   Homogeneous Photocatalytic Reduction of CO2 to CO Using Iron(0) Porphyrin Catalysts: Mechanism and Intrinsic Limitations [J].
Bonin, Julien ;
Chaussemier, Marie ;
Robert, Marc ;
Routier, Mathilde .
CHEMCATCHEM, 2014, 6 (11) :3200-3207
[4]   CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts [J].
Chang, Xiaoxia ;
Wang, Tuo ;
Gong, Jinlong .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (07) :2177-2196
[5]   Two-dimensional nanomaterials for photocatalytic CO2 reduction to solar fuels [J].
Chen, Yong ;
Jia, Gan ;
Hu, Yingfei ;
Fan, Guozheng ;
Tsang, Yuen Hong ;
Li, Zhaosheng ;
Zou, Zhigang .
SUSTAINABLE ENERGY & FUELS, 2017, 1 (09) :1875-1898
[6]   A Local Proton Source Enhances CO2 Electroreduction to CO by a Molecular Fe Catalyst [J].
Costentin, Cyrille ;
Drouet, Samuel ;
Robert, Marc ;
Saveant, Jean-Michel .
SCIENCE, 2012, 338 (6103) :90-94
[7]   Defect Engineering and Phase Junction Architecture of Wide-Bandgap ZnS for Conflicting Visible Light Activity in Photocatalytic H2 Evolution [J].
Fang, Zhibin ;
Weng, Sunxian ;
Ye, Xinxin ;
Feng, Wenhui ;
Zheng, Zuyang ;
Lu, Meiliang ;
Lin, Sen ;
Fu, Xianzhi ;
Liu, Ping .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (25) :13915-13924
[8]   Perovskite Hydroxide CoSn(OH)6 Nanocubes for Efficient Photoreduction of CO2 to CO [J].
Gao, Yan ;
Ye, Lu ;
Cao, Shuyan ;
Chen, Hu ;
Yao, Yanan ;
Jiang, Jian ;
Sun, Licheng .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (01) :781-786
[9]   Degradation of atrazine using metalloporphyrins supported on TiO2 under visible light irradiation [J].
Granados-Oliveros, Gilma ;
Paez-Mozo, Edgar A. ;
Martinez Ortega, Fernando ;
Ferronato, Corinne ;
Chovelon, Jean-Marc .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2009, 89 (3-4) :448-454
[10]   Iron porphyrin-catalyzed reduction of CO2. Photochemical and radiation chemical studies [J].
Grodkowski, J ;
Behar, D ;
Neta, P ;
Hambright, P .
JOURNAL OF PHYSICAL CHEMISTRY A, 1997, 101 (03) :248-254