Histone H3 lysine 36 methylation affects temperature-induced alternative splicing and flowering in plants

被引:140
作者
Pajoro, A. [1 ,2 ]
Severing, E. [3 ,4 ]
Angenent, G. C. [1 ,2 ]
Immink, R. G. H. [1 ,2 ]
机构
[1] Wageningen Univ & Res, Lab Mol Biol, NL-6708 PB Wageningen, Netherlands
[2] Wageningen Univ & Res, Biosci, NL-6708 PB Wageningen, Netherlands
[3] Wageningen Univ & Res, Lab Bioinformat, NL-6708 PB Wageningen, Netherlands
[4] Max Planck Inst Plant Breeding Res, D-50829 Cologne, Germany
关键词
Ambient temperature; Alternative splicing; Histone modification; H3K36me3; Flowering time; SDG8; Arabidopsis; AMBIENT-TEMPERATURE; CIRCADIAN CLOCK; EPIGENETIC REGULATION; CHROMATIN STATES; ARABIDOPSIS; TRANSCRIPTION; EXPRESSION; PROTEIN; MECHANISMS; REVEALS;
D O I
10.1186/s13059-017-1235-x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Global warming severely affects flowering time and reproductive success of plants. Alternative splicing of pre-messenger RNA (mRNA) is an important mechanism underlying ambient temperature-controlled responses in plants, yet its regulation is poorly understood. An increase in temperature promotes changes in plant morphology as well as the transition from the vegetative to the reproductive phase in Arabidopsis thaliana via changes in splicing of key regulatory genes. Here we investigate whether a particular histone modification affects ambient temperature-induced alternative splicing and flowering time. Results: We use a genome-wide approach and perform RNA-sequencing (RNA-seq) analyses and histone H3 lysine 36 tri-methylation (H3K36me3) chromatin immunoprecipitation sequencing (ChIP-seq) in plants exposed to different ambient temperatures. Analysis and comparison of these datasets reveal that temperature-induced differentially spliced genes are enriched in H3K36me3. Moreover, we find that reduction of H3K36me3 deposition causes alteration in temperature-induced alternative splicing. We also show that plants with mutations in H3K36me3 writers, eraser, or readers have altered high ambient temperature-induced flowering. Conclusions: Our results show a key role for the histone mark H3K36me3 in splicing regulation and plant plasticity to fluctuating ambient temperature. Our findings open new perspectives for the breeding of crops that can better cope with environmental changes due to climate change.
引用
收藏
页数:12
相关论文
共 73 条
[1]   MAF2 Is Regulated by Temperature-Dependent Splicing and Represses Flowering at Low Temperatures in Parallel with FLM [J].
Airoldi, Chiara A. ;
Mckay, Mary ;
Davies, Brendan .
PLOS ONE, 2015, 10 (05)
[2]   Regulation of Plant Developmental Processes by a Novel Splicing Factor [J].
Ali, Gul Shad ;
Palusa, Saiprasad G. ;
Golovkin, Maxim ;
Prasad, Jayendra ;
Manley, James L. ;
Reddy, Anireddy S. N. .
PLOS ONE, 2007, 2 (05)
[3]   HTSeq-a Python']Python framework to work with high-throughput sequencing data [J].
Anders, Simon ;
Pyl, Paul Theodor ;
Huber, Wolfgang .
BIOINFORMATICS, 2015, 31 (02) :166-169
[4]   UPF1 is required for nonsense-mediated mRNA decay (NMD) and RNAi in Arabidopsis [J].
Arciga-Reyes, Luis ;
Wootton, Lucie ;
Kieffer, Martin ;
Davies, Brendan .
PLANT JOURNAL, 2006, 47 (03) :480-489
[5]   Potent induction of Arabidopsis thaliana flowering by elevated growth temperature [J].
Balasubramanian, Sureshkumar ;
Sureshkumar, Sridevi ;
Lempe, Janne ;
Weigel, Detlef .
PLOS GENETICS, 2006, 2 (07) :980-989
[6]   Endopolyploidization and flowering time are antagonistically regulated by checkpoint component MAD1 and immunity modulator MOS1 [J].
Bao, Zhilong ;
Zhang, Ning ;
Hua, Jian .
NATURE COMMUNICATIONS, 2014, 5
[7]   The trxG family histone methyltransferase SET DOMAIN GROUP 26 promotes flowering via a distinctive genetic pathway [J].
Berr, Alexandre ;
Shafiq, Sarfraz ;
Pinon, Violaine ;
Dong, Aiwu ;
Shen, Wen-Hui .
PLANT JOURNAL, 2015, 81 (02) :316-328
[8]   Unique, shared, and redundant roles for the Arabidopsis SWI/SNF chromatin remodeling ATPases BRAHMA and SPLAYED [J].
Bezhani, Staver ;
Winter, Cara ;
Hershman, Steve ;
Wagner, John D. ;
Kennedy, John F. ;
Kwon, Chang Seob ;
Pfluger, Jennifer ;
Su, Yanhui ;
Wagner, Doris .
PLANT CELL, 2007, 19 (02) :403-416
[9]   Gene Ontology Consortium: going forward [J].
Blake, J. A. ;
Christie, K. R. ;
Dolan, M. E. ;
Drabkin, H. J. ;
Hill, D. P. ;
Ni, L. ;
Sitnikov, D. ;
Burgess, S. ;
Buza, T. ;
Gresham, C. ;
McCarthy, F. ;
Pillai, L. ;
Wang, H. ;
Carbon, S. ;
Dietze, H. ;
Lewis, S. E. ;
Mungall, C. J. ;
Munoz-Torres, M. C. ;
Feuermann, M. ;
Gaudet, P. ;
Basu, S. ;
Chisholm, R. L. ;
Dodson, R. J. ;
Fey, P. ;
Mi, H. ;
Thomas, P. D. ;
Muruganujan, A. ;
Poudel, S. ;
Hu, J. C. ;
Aleksander, S. A. ;
McIntosh, B. K. ;
Renfro, D. P. ;
Siegele, D. A. ;
Attrill, H. ;
Brown, N. H. ;
Tweedie, S. ;
Lomax, J. ;
Osumi-Sutherland, D. ;
Parkinson, H. ;
Roncaglia, P. ;
Lovering, R. C. ;
Talmud, P. J. ;
Humphries, S. E. ;
Denny, P. ;
Campbell, N. H. ;
Foulger, R. E. ;
Chibucos, M. C. ;
Giglio, M. Gwinn ;
Chang, H. Y. ;
Finn, R. .
NUCLEIC ACIDS RESEARCH, 2015, 43 (D1) :D1049-D1056
[10]   ELF3 Controls Thermoresponsive Growth in Arabidopsis [J].
Box, Mathew S. ;
Huang, B. Emma ;
Domijan, Mirela ;
Jaeger, Katja E. ;
Khattak, Asif Khan ;
Yoo, Seong Jeon ;
Sedivy, Emma L. ;
Jones, D. Marc ;
Hearn, Timothy J. ;
Webb, Alex A. R. ;
Grant, Alastair ;
Locke, James C. W. ;
Wigge, Philip A. .
CURRENT BIOLOGY, 2015, 25 (02) :194-199