Handle attaching in symplectic homology and the Chord Conjecture

被引:61
作者
Cieliebak, K [1 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
关键词
D O I
10.1007/s100970100036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Arnold conjectured that every Legendrian knot in the standard contact structure on the 3-sphere possesses a characteristic chord with respect to any contact form. I confirm this conjecture if the know has Thurston-Bennequin invariant-1. More generally, existence of chords is proved for a standard Legendrian unknot on the boundary of a subcritical Stein manifold of any dimension. There is also a multiplicity result which implies in some situations existence of infinitely many chords. The proof relies on the behaviour of symplectic homology under handle attaching. The main observation is that symplectic homology only changes in the presence of chords.
引用
收藏
页码:115 / 142
页数:28
相关论文
共 27 条
  • [11] ELIASHBERG Y., 1991, P S PURE MATH 2, V52, P135
  • [12] ELIASHBERG Y, 1996, SYMPLETIC GEOMETRY P
  • [13] ELIASHBERG Y, 1998, DOCT MATH EXTRA VOLU, P1
  • [14] Eliashberg Y., 1990, Internat. J. Math., V1, P29, DOI [10.1142/S0129167X90000034, DOI 10.1142/S0129167X90000034]
  • [15] SYMPLECTIC HOMOLOGY-I OPEN SETS IN C(N)
    FLOER, A
    HOFER, H
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1994, 215 (01) : 37 - 88
  • [16] APPLICATIONS OF SYMPLECTIC HOMOLOGY-I
    FLOER, A
    HOFER, H
    WYSOCKI, K
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1994, 217 (04) : 577 - 606
  • [17] Givental A.B., 1990, Adv. Soviet Math., V1, P71
  • [18] Givental A.B., 1990, LONDON MATH SOC LECT, V151, P35
  • [19] Gompf R. E., 1999, GRAD STUD MATH, V20
  • [20] Handlebody construction of Stein surfaces
    Gompf, RE
    [J]. ANNALS OF MATHEMATICS, 1998, 148 (02) : 619 - 693