Handle attaching in symplectic homology and the Chord Conjecture

被引:64
作者
Cieliebak, K [1 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
关键词
D O I
10.1007/s100970100036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Arnold conjectured that every Legendrian knot in the standard contact structure on the 3-sphere possesses a characteristic chord with respect to any contact form. I confirm this conjecture if the know has Thurston-Bennequin invariant-1. More generally, existence of chords is proved for a standard Legendrian unknot on the boundary of a subcritical Stein manifold of any dimension. There is also a multiplicity result which implies in some situations existence of infinitely many chords. The proof relies on the behaviour of symplectic homology under handle attaching. The main observation is that symplectic homology only changes in the presence of chords.
引用
收藏
页码:115 / 142
页数:28
相关论文
共 27 条
[1]   A note on V.I. Arnold's chord conjecture [J].
Abbas, C .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 1999, 1999 (04) :217-222
[2]   Finite energy surfaces and the chord problem [J].
Abbas, C .
DUKE MATHEMATICAL JOURNAL, 1999, 96 (02) :241-316
[3]   1ST STEPS IN SYMPLECTIC TOPOLOGY [J].
ARNOLD, VI .
RUSSIAN MATHEMATICAL SURVEYS, 1986, 41 (06) :1-21
[4]  
AUDIN M, 1994, BIRKHAUSER PROGR MAT, V117
[5]  
BOLOTIN SV, 1978, VESTN MOSK U MAT M+, P72
[6]   A geometric obstruction to the contact type property [J].
Cieliebak, K .
MATHEMATISCHE ZEITSCHRIFT, 1998, 228 (03) :451-487
[7]   SYMPLECTIC HOMOLOGY .2. A GENERAL CONSTRUCTION [J].
CIELIEBAK, K ;
FLOER, A ;
HOFER, H .
MATHEMATISCHE ZEITSCHRIFT, 1995, 218 (01) :103-122
[8]  
Cieliebak K, 1996, MATH Z, V223, P27, DOI 10.1007/BF02621587
[9]   MORSE-TYPE INDEX THEORY FOR FLOWS AND PERIODIC-SOLUTIONS FOR HAMILTONIAN EQUATIONS [J].
CONLEY, C ;
ZEHNDER, E .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1984, 37 (02) :207-253
[10]  
Eliashberg Y, 1998, CRM PROC & LECT NOTE, V15, P17