STRONG SOLUTIONS TO CAUCHY PROBLEM OF 2D COMPRESSIBLE NEMATIC LIQUID CRYSTAL FLOWS

被引:14
作者
Liu, Yang [1 ]
Zheng, Sining [1 ]
Li, Huapeng [2 ]
Liu, Shengquan [3 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
[2] Northeast Elect Power Univ, Coll Sci, Jilin 132013, Peoples R China
[3] Liaoning Univ, Sch Math, Shenyang 110036, Peoples R China
基金
中国国家自然科学基金;
关键词
Compressible nematic liquid crystal; vacuum; local strong solution; weighted estimates; GLOBAL WELL-POSEDNESS; 2-DIMENSIONAL EQUATIONS; CLASSICAL-SOLUTIONS; ENERGY;
D O I
10.3934/dcds.2017165
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the local existence of strong solutions to the Cauchy problem of the 2D simplified Ericksen-Leslie system modeling compressible nematic liquid crystal flows, coupled via rho (the density of the fluid), u (the velocity of the field), and d (the macroscopic/continuum molecular orientations). Notice that the technique used for the corresponding 3D local well-posedness of strong solutions fails treating the 2D case, because the LP norm (p > 2) of the velocity u cannot be controlled in terms only of rho(1/2)u and Vu here. In the present paper, under the framework of weighted approximation estimates introduced in [J. Li, Z. Liang, On classical solutions to the Cauchy problem of the two-dimensional barotropic compressible Navier-Stokes equations with vacuum, J. Math. Pures Appl. (2014) 640-6711 for Navier-Stokes equations, we obtain the local existence of strong solutions to the 2D compressible nematic liquid crystal flows.
引用
收藏
页码:3921 / 3938
页数:18
相关论文
共 25 条
[1]  
De Gennes P. G., 1974, The Physics of Liquid Crystals
[2]   COMPRESSIBLE HYDRODYNAMIC FLOW OF LIQUID CRYSTALS IN 1-D [J].
Ding, Shijin ;
Lin, Junyu ;
Wang, Changyou ;
Wen, Huanyao .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (02) :539-563
[3]   WEAK SOLUTION TO COMPRESSIBLE HYDRODYNAMIC FLOW OF LIQUID CRYSTALS IN DIMENSION ONE [J].
Ding, Shijin ;
Wang, Changyou ;
Wen, Huanyao .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2011, 15 (02) :357-371
[4]  
ERICKSEN JL, 1962, ARCH RATION MECH AN, V9, P371
[5]   Weak-Strong Uniqueness for the Isentropic Compressible Navier-Stokes System [J].
Germain, Pierre .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2011, 13 (01) :137-146
[6]   Blow Up Criterion for Compressible Nematic Liquid Crystal Flows in Dimension Three [J].
Huang, Tao ;
Wang, Changyou ;
Wen, Huanyao .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 204 (01) :285-311
[7]   Strong solutions of the compressible nematic liquid crystal flow [J].
Huang, Tao ;
Wang, Changyou ;
Wen, Huanyao .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (03) :2222-2265
[8]   A Serrin criterion for compressible nematic liquid crystal flows [J].
Huang, Xiangdi ;
Wang, Yun .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2013, 36 (11) :1363-1375
[9]   On multi-dimensional compressible flows of nematic liquid crystals with large initial energy in a bounded domain [J].
Jiang, Fei ;
Jiang, Song ;
Wang, Dehua .
JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 265 (12) :3369-3397
[10]  
LESLIE FM, 1968, ARCH RATION MECH AN, V28, P265