Optical forces in nanorod metamaterial

被引:39
作者
Bogdanov, Andrey A. [1 ,2 ,3 ]
Shalin, Alexander S. [1 ]
Ginzburg, Pavel [4 ]
机构
[1] ITMO Univ, St Petersburg 197101, Russia
[2] Ioffe Inst, St Petersburg 194021, Russia
[3] Peter Great St Petersburg Polytech Univ, St Petersburg 195251, Russia
[4] Tel Aviv Univ, Sch Elect Engn, IL-69978 Tel Aviv, Israel
基金
俄罗斯基础研究基金会; 俄罗斯科学基金会;
关键词
NANOPARTICLES; MANIPULATION; PARTICLES; LIGHT;
D O I
10.1038/srep15846
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Optomechanical manipulation of micro and nano-scale objects with laser beams finds use in a large span of multidisciplinary applications. Auxiliary nanostructuring could substantially improve performances of classical optical tweezers by means of spatial localization of objects and intensity required for trapping. Here we investigate a three-dimensional nanorod metamaterial platform, serving as an auxiliary tool for the optical manipulation, able to support and control near-field interactions and generate both steep and flat optical potential profiles. It was shown that the 'topological transition' from the elliptic to hyperbolic dispersion regime of the metamaterial, usually having a significant impact on various light-matter interaction processes, does not strongly affect the distribution of optical forces in the metamaterial. This effect is explained by the predominant near-fields contributions of the nanostructure to optomechanical interactions. Semi-analytical model, approximating the finite size nanoparticle by a point dipole and neglecting the mutual re-scattering between the particle and nanorod array, was found to be in a good agreement with full-wave numerical simulation. In-plane (perpendicular to the rods) trapping regime, saddle equilibrium points and optical puling forces (directed along the rods towards the light source), acting on a particle situated inside or at the nearby the metamaterial, were found.
引用
收藏
页数:9
相关论文
共 40 条
[1]   ACCELERATION AND TRAPPING OF PARTICLES BY RADIATION PRESSURE [J].
ASHKIN, A .
PHYSICAL REVIEW LETTERS, 1970, 24 (04) :156-&
[2]   Anisotropic optical properties of arrays of gold nanorods embedded in alumina [J].
Atkinson, R ;
Hendren, WR ;
Wurtz, GA ;
Dickson, W ;
Zayats, AV ;
Evans, P ;
Pollard, RJ .
PHYSICAL REVIEW B, 2006, 73 (23)
[3]   Nano-plasmonic antennas in the near infrared regime [J].
Berkovitch, N. ;
Ginzburg, P. ;
Orenstein, M. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2012, 24 (07)
[4]  
Cai W, 2010, OPTICAL METAMATERIALS: FUNDAMENTALS AND APPLICATIONS, P1, DOI 10.1007/978-1-4419-1151-3
[5]  
Chen J, 2011, NAT PHOTONICS, V5, P531, DOI [10.1038/nphoton.2011.153, 10.1038/NPHOTON.2011.153]
[6]   Optical manipulation of nanoparticles: a review [J].
Dienerowitz, Maria ;
Mazilu, Michael ;
Dholakia, Kishan .
JOURNAL OF NANOPHOTONICS, 2008, 2
[7]   Nanowire metamaterials with extreme optical anisotropy [J].
Elser, Justin ;
Wangberg, Robyn ;
Podolskiy, Viktor A. ;
Narimanov, Evgenii E. .
APPLIED PHYSICS LETTERS, 2006, 89 (26)
[8]   Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials [J].
Ginzburg, P. ;
Rodriguez Fortuno, F. J. ;
Wurtz, G. A. ;
Dickson, W. ;
Murphy, A. ;
Morgan, F. ;
Pollard, R. J. ;
Iorsh, I. ;
Atrashchenko, A. ;
Belov, P. A. ;
Kivshar, Y. S. ;
Nevet, A. ;
Ankonina, G. ;
Orenstein, M. ;
Zayats, A. V. .
OPTICS EXPRESS, 2013, 21 (12) :14907-14917
[9]   Self-Induced Torque in Hyperbolic Metamaterials [J].
Ginzburg, Pavel ;
Krasavin, Alexey V. ;
Poddubny, Alexander N. ;
Belov, Pavel A. ;
Kivshar, Yuri S. ;
Zayats, Anatoly V. .
PHYSICAL REVIEW LETTERS, 2013, 111 (03)
[10]   Nonmetallic left-handed material based on negative-positive anisotropy in low-dimensional quantum structures [J].
Ginzburg, Pavel ;
Orenstein, Meir .
JOURNAL OF APPLIED PHYSICS, 2008, 103 (08)