Higgs Bundles and (A, B, A)-Branes

被引:30
作者
Baraglia, David [1 ]
Schaposnik, Laura P. [2 ]
机构
[1] Univ Adelaide, Sch Math Sci, Adelaide, SA 5005, Australia
[2] Heidelberg Univ, Math Inst, D-69120 Heidelberg, Germany
基金
美国国家科学基金会;
关键词
LANGLANDS DUALITY;
D O I
10.1007/s00220-014-2053-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Through the action of anti-holomorphic involutions on a compact Riemann surface I pound we construct families of (A, B, A)-branes in the moduli spaces of G (c) -Higgs bundles on I pound. We study the geometry of these (A, B, A)-branes in terms of spectral data and show they have the structure of real integrable systems.
引用
收藏
页码:1271 / 1300
页数:30
相关论文
共 25 条
[1]  
Atiyah M., 1971, Ann. Sci. Ecole Norm. Sup., V4, P47
[2]   THE YANG-MILLS EQUATIONS OVER RIEMANN SURFACES [J].
ATIYAH, MF ;
BOTT, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1983, 308 (1505) :523-615
[3]  
Baraglia D., 2014, ADV THEOR M IN PRESS
[4]  
BEAUVILLE A, 1989, J REINE ANGEW MATH, V398, P169
[5]   Connections and Higgs fields on a principal bundle [J].
Biswas, Indranil ;
Gomez, Tomas L. .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2008, 33 (01) :19-46
[6]   Symmetries of Accola-Maclachlan and Kulkarni surfaces [J].
Broughton, SA ;
Bujalance, E ;
Costa, AF ;
Gamboa, JM ;
Gromadzki, G .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (03) :637-646
[7]  
Bujalance E., 2001, MEMOIRES SOC MATH FR, V86, P1
[8]  
CORLETTE K, 1988, J DIFFER GEOM, V28, P361
[9]  
DONALDSON SK, 1987, P LOND MATH SOC, V55, P127
[10]   THE SYMPLECTIC NATURE OF FUNDAMENTAL-GROUPS OF SURFACES [J].
GOLDMAN, WM .
ADVANCES IN MATHEMATICS, 1984, 54 (02) :200-225