Whitehead modules over large principal ideal domains

被引:2
作者
Eklof, PC
Shelah, S
机构
[1] Math Dept, UCI, Irvine
[2] Institute of Mathematics, Hebrew University
基金
美国国家科学基金会;
关键词
D O I
10.1515/form.2002.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Whitehead problem for principal ideal domains of large size. It is proved, in ZFC, that some p.i.d.'s of size greater than or equal to N-2 have non-free Whitehead modules even though they are not complete discrete valuation rings.
引用
收藏
页码:477 / 482
页数:6
相关论文
共 8 条
[1]  
BECKER T, 1989, FORUM MATH, V1, P53
[2]  
Eklof P.C., 1990, ALMOST FREE MODULES
[3]   WHITEHEADIAN MODULI OF DENUMERABLE RANGE OVER MAIN IDEAL RINGS [J].
GERSTNER, O ;
KAUP, L ;
WEIDNER, HG .
ARCHIV DER MATHEMATIK, 1969, 20 (05) :503-&
[4]   Cotorsion theories and splitters [J].
Göbel, R ;
Shelah, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (11) :5357-5379
[5]   COMPACTNESS THEOREM FOR SINGULAR CARDINALS, FREE ALGEBRAS, WHITEHEAD PROBLEM AND TRANSVERSALS [J].
SHELAH, S .
ISRAEL JOURNAL OF MATHEMATICS, 1975, 21 (04) :319-349
[6]   INFINITE ABELIAN-GROUPS, WHITEHEAD PROBLEM AND SOME CONSTRUCTIONS [J].
SHELAH, S .
ISRAEL JOURNAL OF MATHEMATICS, 1974, 18 (03) :243-256
[7]   WHITEHEAD-GROUPS MAY NOT BE FREE EVEN ASSUMING CH .2. [J].
SHELAH, S .
ISRAEL JOURNAL OF MATHEMATICS, 1980, 35 (04) :257-285
[8]  
TRLIFAJ J, 1991, COMMENT MATH U CAROL, V32, P27