Nanodiamond-Based Thermal Fluids

被引:68
作者
Taha-Tijerina, Jose Jaime [1 ]
Narayanan, Tharangattu Narayanan [2 ]
Tiwary, Chandra Sekhar [1 ,3 ]
Lozano, Karen [4 ]
Chipara, Mircea [5 ]
Ajayan, Pulickel M. [1 ]
机构
[1] Rice Univ, Dept Mat Sci & NanoEngn, Houston, TX 77005 USA
[2] Cent Electrochem Res Inst CSIR CECRI, Council Sci & Ind Res, Karaikkudi 630006, Tamil Nadu, India
[3] Indian Inst Sci, Bangalore 560012, Karnataka, India
[4] Univ Texas Pan Amer, Dept Mech Engn, Edinburg, TX 78539 USA
[5] Univ Texas Pan Amer, Dept Phys & Geol, Edinburg, TX 78539 USA
关键词
nanofluids; diamond; mechanical properties; thermal conductivity; viscosity; RAMAN-SPECTROSCOPY; HEAT-TRANSFER; NANOFLUIDS; CONDUCTIVITY; DIAMOND; CARBON; SUSPENSIONS; PARTICLES; NANOPARTICLES; TRANSPORT;
D O I
10.1021/am405575t
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Dispersions of nanodiamond (average size similar to 6 nm) within dielectric insulator mineral oil are reported for their enhanced thermal conductivity properties and potential applications in thermal management. Dynamic and kinematic viscosities-very important parameters in thermal management by nanofluids-are investigated. The dependence of the dynamic viscosity is well-described by the theoretical predictions of Einstein's model. The temperature dependence of the dynamic viscosity obeys an Arrhenius-like behavior, where the activation energy and the pre-exponential factor have an exponential dependence on the filler fraction of nanodiamonds. An enhancement in thermal conductivity up to 70% is reported for nanodiamond based thermal fluids. Additional electron microscopy, Raman spectroscopy and X-ray diffraction analysis support the experimental data and their interpretation.
引用
收藏
页码:4778 / 4785
页数:8
相关论文
共 39 条
[21]   The rheology of suspensions of solid particles [J].
Mueller, S. ;
Llewellin, E. W. ;
Mader, H. M. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 466 (2116) :1201-1228
[22]   Preparation and behavior of brownish, clear nanodiamond colloids [J].
Ozawa, Masaki ;
Inaguma, Masayasu ;
Takahashi, Makoto ;
Kataoka, Fumiaki ;
Krueger, Anke ;
Osawa, Eiji .
ADVANCED MATERIALS, 2007, 19 (09) :1201-+
[23]  
Perry R.H., 2007, Perry's chemical engineers' handbook
[24]   Nanodiamond and onion-like carbon polymer nanocomposites [J].
Shenderova, O. ;
Tyler, T. ;
Cunningham, G. ;
Ray, M. ;
Walsh, J. ;
Casulli, M. ;
Hens, S. ;
McGuire, G. ;
Kuznetsov, V. ;
Lipa, S. .
DIAMOND AND RELATED MATERIALS, 2007, 16 (4-7) :1213-1217
[25]   Synthesis of Aqueous and Nonaqueous Iron Oxide Nanofluids and Study of Temperature Dependence on Thermal Conductivity and Viscosity [J].
Shima, P. D. ;
Philip, John ;
Raj, Baldev .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (44) :18825-18833
[26]  
Speight JG, 2004, LANGES HDB CHEM
[27]   Multifunctional nanofluids with 2D nanosheets for thermal and tribological management [J].
Taha-Tijerina, J. ;
Pena-Paras, L. ;
Narayanan, T. N. ;
Garza, L. ;
Lapray, C. ;
Gonzalez, J. ;
Palacios, E. ;
Molina, D. ;
Garcia, A. ;
Maldonado, D. ;
Ajayan, P. M. .
WEAR, 2013, 302 (1-2) :1241-1248
[28]   Electrically Insulating Thermal Nano-Oils Using 2D Fillers [J].
Taha-Tijerina, Jaime ;
Narayanan, Tharangattu N. ;
Gao, Guanhui ;
Rohde, Matthew ;
Tsentalovich, Dmitri A. ;
Pasquali, Matteo ;
Ajayan, Pulickel M. .
ACS NANO, 2012, 6 (02) :1214-1220
[29]   Synthesis of wurtzite-phase ZnS nanocrystal and its optical properties [J].
Tiwary, C. S. ;
Kumbhakar, P. ;
Mitra, A. K. ;
Chattopadhyay, K. .
JOURNAL OF LUMINESCENCE, 2009, 129 (11) :1366-1370
[30]   Thermal conductivity of nanoparticle-fluid mixture [J].
Wang, XW ;
Xu, XF ;
Choi, SUS .
JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 1999, 13 (04) :474-480