Nanodiamond-Based Thermal Fluids

被引:68
作者
Taha-Tijerina, Jose Jaime [1 ]
Narayanan, Tharangattu Narayanan [2 ]
Tiwary, Chandra Sekhar [1 ,3 ]
Lozano, Karen [4 ]
Chipara, Mircea [5 ]
Ajayan, Pulickel M. [1 ]
机构
[1] Rice Univ, Dept Mat Sci & NanoEngn, Houston, TX 77005 USA
[2] Cent Electrochem Res Inst CSIR CECRI, Council Sci & Ind Res, Karaikkudi 630006, Tamil Nadu, India
[3] Indian Inst Sci, Bangalore 560012, Karnataka, India
[4] Univ Texas Pan Amer, Dept Mech Engn, Edinburg, TX 78539 USA
[5] Univ Texas Pan Amer, Dept Phys & Geol, Edinburg, TX 78539 USA
关键词
nanofluids; diamond; mechanical properties; thermal conductivity; viscosity; RAMAN-SPECTROSCOPY; HEAT-TRANSFER; NANOFLUIDS; CONDUCTIVITY; DIAMOND; CARBON; SUSPENSIONS; PARTICLES; NANOPARTICLES; TRANSPORT;
D O I
10.1021/am405575t
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Dispersions of nanodiamond (average size similar to 6 nm) within dielectric insulator mineral oil are reported for their enhanced thermal conductivity properties and potential applications in thermal management. Dynamic and kinematic viscosities-very important parameters in thermal management by nanofluids-are investigated. The dependence of the dynamic viscosity is well-described by the theoretical predictions of Einstein's model. The temperature dependence of the dynamic viscosity obeys an Arrhenius-like behavior, where the activation energy and the pre-exponential factor have an exponential dependence on the filler fraction of nanodiamonds. An enhancement in thermal conductivity up to 70% is reported for nanodiamond based thermal fluids. Additional electron microscopy, Raman spectroscopy and X-ray diffraction analysis support the experimental data and their interpretation.
引用
收藏
页码:4778 / 4785
页数:8
相关论文
共 39 条
[1]   Synthesis and Transport Properties of Metal Oxide Decorated Graphene Dispersed Nanofluids [J].
Baby, Tessy Theres ;
Sundara, Ramaprabhu .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (17) :8527-8533
[2]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
[3]   Nanodiamond-Polymer Composite Fibers and Coatings [J].
Behler, Kristopher D. ;
Stravato, Antonella ;
Mochalin, Vadym ;
Korneva, Guzeliya ;
Yushin, Gleb ;
Gogotsi, Yury .
ACS NANO, 2009, 3 (02) :363-369
[4]   Physicochemical Properties of Oil-Based Nanofluids Containing Hybrid Structures of Silver Nanoparticles Supported on Silica [J].
Botha, Subelia S. ;
Ndungu, Patrick ;
Bladergroen, Bernard J. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2011, 50 (06) :3071-3077
[5]   Nanodiamond Nanofluids for Enhanced Thermal Conductivity [J].
Branson, Blake T. ;
Beauchamp, Paul S. ;
Beam, Jeremiah C. ;
Lukehart, Charles M. ;
Davidson, Jim L. .
ACS NANO, 2013, 7 (04) :3183-3189
[6]   Silicon oil based multiwalled carbon nanotubes nanofluid with optimized thermal conductivity enhancement [J].
Chen, Lifei ;
Xie, Huaqing .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2009, 352 (1-3) :136-140
[7]  
Chipara DM, 2011, SPECTROSCOPY-US, V26, P42
[8]   Preparation and heat transfer properties of nanoparticle-in-transformer oil dispersions as advanced energy-efficient coolants [J].
Choi, C. ;
Yoo, H. S. ;
Oh, J. M. .
CURRENT APPLIED PHYSICS, 2008, 8 (06) :710-712
[9]   Nanofluids: From Vision to Reality Through Research [J].
Choi, Stephen U. S. .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2009, 131 (03) :1-9
[10]   Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles [J].
Eastman, JA ;
Choi, SUS ;
Li, S ;
Yu, W ;
Thompson, LJ .
APPLIED PHYSICS LETTERS, 2001, 78 (06) :718-720