Voltage gated ion and molecule transport in engineered nanochannels: theory, fabrication and applications

被引:83
作者
Guan, Weihua [1 ]
Li, Sylvia Xin [2 ]
Reed, Mark A. [1 ,3 ]
机构
[1] Yale Univ, Dept Elect Engn, New Haven, CT 06520 USA
[2] Yale Univ, Dept Phys, New Haven, CT 06520 USA
[3] Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA
基金
美国国家科学基金会;
关键词
nanofluidics; voltage gated nanochannels; electrofluidics; ELECTROKINETIC ENERGY-CONVERSION; CAPILLARY ZONE ELECTROPHORESIS; TUNABLE NANOFLUIDIC DIODE; SURFACE-CHARGE PROPERTY; SOLID-STATE NANOPORES; FIELD-EFFECT CONTROL; ELECTROOSMOTIC FLOW; CONCENTRATION-GRADIENT; POWER-GENERATION; ELECTRIC-FIELD;
D O I
10.1088/0957-4484/25/12/122001
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Nanochannels remain at the focus of growing scientific and technological interest. The nanometer scale of the structure allows the discovery of a new range of phenomena that has not been possible in traditional microchannels, among which a direct field effect control over the charges in nanochannels is very attractive for various applications, since it offers a unique opportunity to integrate wet ionics with dry electronics seamlessly. This review will focus on the voltage gated ionic and molecular transport in engineered gated nanochannels. We will present an overview of the transport theory. Fabrication techniques regarding the gated nanostructures will also be discussed. In addition, various applications using the voltage gated nanochannels are outlined, which involves biological and chemical analysis, and energy conversion.
引用
收藏
页数:19
相关论文
共 103 条
[91]   Field-effect based attomole titrations in nanoconfinement [J].
Veenhuis, Rogier B. H. ;
van der Wouden, Egbert J. ;
van Nieuwkasteele, Jan W. ;
van den Berg, Albert ;
Eijkel, Jan C. T. .
LAB ON A CHIP, 2009, 9 (24) :3472-3480
[92]   Fast Nonlinear Ion Transport via Field-induced Hydrodynamic Slip in Sub-20-nm Hydrophilic Nanofluidic Transistors [J].
Vermesh, Udi ;
Choi, Jang Wook ;
Vermesh, Ophir ;
Fan, Rong ;
Nagarah, John ;
Heath, James R. .
NANO LETTERS, 2009, 9 (04) :1315-1319
[93]   Nanofluidic diode [J].
Vlassiouk, Ivan ;
Siwy, Zuzanna S. .
NANO LETTERS, 2007, 7 (03) :552-556
[94]   Current rectification at quartz nanopipet electrodes [J].
Wei, C ;
Bard, AJ ;
Feldberg, SW .
ANALYTICAL CHEMISTRY, 1997, 69 (22) :4627-4633
[95]  
Wei RS, 2012, NAT NANOTECHNOL, V7, P257, DOI [10.1038/NNANO.2012.24, 10.1038/nnano.2012.24]
[96]  
Wu J, 2012, NAT NANOTECHNOL, V7, P133, DOI [10.1038/nnano.2011.240, 10.1038/NNANO.2011.240]
[97]   Electric energy generation in single track-etched nanopores [J].
Xie, Yanbo ;
Wang, Xinwei ;
Xue, Jianming ;
Jin, Ke ;
Chen, Long ;
Wang, Yugang .
APPLIED PHYSICS LETTERS, 2008, 93 (16)
[98]   Thermodynamic analysis of electrokinetic energy conversion [J].
Xuan, Xiangchun ;
Li, Dongqing .
JOURNAL OF POWER SOURCES, 2006, 156 (02) :677-684
[99]   Proton-regulated rectified ionic transport through solid-state conical nanopores modified with phosphate-bearing polymer brushes [J].
Yameen, Basit ;
Ali, Mubarak ;
Neumann, Reinhard ;
Ensinger, Wolfgang ;
Knoll, Wolfgang ;
Azzaroni, Omar .
CHEMICAL COMMUNICATIONS, 2010, 46 (11) :1908-1910
[100]   Nanofluidic Diodes Based on Nanotube Heterojunctions [J].
Yan, Ruoxue ;
Liang, Wenjie ;
Fan, Rong ;
Yang, Peidong .
NANO LETTERS, 2009, 9 (11) :3820-3825