A fast and large bandwidth superconducting variable coupler

被引:9
作者
Chang, H. -S. [1 ]
Satzinger, K. J. [1 ,2 ,5 ]
Zhong, Y. P. [1 ]
Bienfait, A. [1 ,6 ]
Chou, M. -H. [1 ,3 ]
Conner, C. R. [1 ]
Dumur, E. [1 ,4 ,7 ]
Grebel, J. [1 ]
Peairs, G. A. [1 ,2 ]
Povey, R. G. [1 ,3 ]
Cleland, A. N. [1 ,4 ,5 ]
机构
[1] Univ Chicago, Pritzker Sch Mol Engn, Chicago, IL 60637 USA
[2] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[3] Univ Chicago, Dept Phys, Chicago, IL 60637 USA
[4] Argonne Natl Lab, Argonne, IL 60439 USA
[5] Google, Santa Barbara, CA 93117 USA
[6] Univ Claude Bernard, ENS Lyon, Univ Lyon, Lab Phys,CNRS, F-69342 Lyon, France
[7] Univ Grenoble Alpes, CEA, INAC Pheliqs, QuantECA, F-38000 Grenoble, France
基金
美国国家科学基金会;
关键词
ENTANGLEMENT;
D O I
10.1063/5.0028840
中图分类号
O59 [应用物理学];
学科分类号
摘要
Variable microwave-frequency couplers are highly useful components in classical communication systems and likely will play an important role in quantum communication applications. Conventional semiconductor-based microwave couplers have been used with superconducting quantum circuits, enabling, for example, the in situ measurements of multiple devices via a common readout chain. However, the semiconducting elements are lossy and furthermore dissipate energy when switched, making them unsuitable for cryogenic applications requiring rapid, repeated switching. Superconducting Josephson junction-based couplers can be designed for dissipation-free operation with fast switching and are easily integrated with superconducting quantum circuits. These enable on-chip, quantum-coherent routing of microwave photons, providing an appealing alternative to semiconductor switches. Here, we present and characterize a chip-based broadband microwave variable coupler, tunable over 4-8GHz with over 1.5GHz instantaneous bandwidth, based on the superconducting quantum interference device with two parallel Josephson junctions. The coupler is dissipation-free and features large on-off ratios in excess of 40dB, and the coupling can be changed in about 10ns. The simple design presented here can be readily integrated with superconducting qubit circuits and can be easily generalized to realize a four- or more port device. Published under license by AIP Publishing.
引用
收藏
页数:5
相关论文
共 21 条
[11]  
Lang C, 2013, NAT PHYS, V9, P345, DOI [10.1038/NPHYS2612, 10.1038/nphys2612]
[12]   Deterministic bidirectional communication and remote entanglement generation between superconducting qubits [J].
Leung, N. ;
Lu, Y. ;
Chakram, S. ;
Naik, R. K. ;
Earnest, N. ;
Ma, R. ;
Jacobs, K. ;
Cleland, A. N. ;
Schuster, D. I. .
NPJ QUANTUM INFORMATION, 2019, 5 (1)
[13]   On-chip Josephson junction microwave switch [J].
Naaman, O. ;
Abutaleb, M. O. ;
Kirby, C. ;
Rennie, M. .
APPLIED PHYSICS LETTERS, 2016, 108 (11)
[14]   Robust Concurrent Remote Entanglement Between Two Superconducting Qubits [J].
Narla, A. ;
Shankar, S. ;
Hatridge, M. ;
Leghtas, Z. ;
Sliwa, K. M. ;
Zalys-Geller, E. ;
Mundhada, S. O. ;
Pfaff, W. ;
Frunzio, L. ;
Schoelkopf, R. J. ;
Devoret, M. H. .
PHYSICAL REVIEW X, 2016, 6 (03)
[15]   Superconducting Switch for Fast On-Chip Routing of Quantum Microwave Fields [J].
Pechal, M. ;
Besse, J. -C. ;
Mondal, M. ;
Oppliger, M. ;
Gasparinetti, S. ;
Wallraff, A. .
PHYSICAL REVIEW APPLIED, 2016, 6 (02)
[16]   Two-port microwave calibration at millikelvin temperatures [J].
Ranzani, Leonardo ;
Spietz, Lafe ;
Popovic, Zoya ;
Aumentado, Jose .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2013, 84 (03)
[17]  
Rosenthal E. I., 2020, ARXIV200803805
[18]   Quantum control of surface acoustic-wave phonons [J].
Satzinger, K. J. ;
Zhong, Y. P. ;
Chang, H. -S. ;
Peairs, G. A. ;
Bienfait, A. ;
Chou, Ming-Han ;
Cleland, A. Y. ;
Conner, C. R. ;
Dumur, E. ;
Grebel, J. ;
Gutierrez, I. ;
November, B. H. ;
Povey, R. G. ;
Whiteley, S. J. ;
Awschalom, D. D. ;
Schuster, D. I. ;
Cleland, A. N. .
NATURE, 2018, 563 (7733) :661-665
[19]   An On-Chip Mach-Zehnder Interferometer in the Microwave Regime [J].
Schuermans, Steven ;
Simoen, Michael ;
Sandberg, Martin ;
Krantz, Philip ;
Wilson, C. M. ;
Delsing, Per .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2011, 21 (03) :448-451
[20]   DC SQUID - NOISE AND OPTIMIZATION [J].
TESCHE, CD ;
CLARKE, J .
JOURNAL OF LOW TEMPERATURE PHYSICS, 1977, 29 (3-4) :301-331