A fast and large bandwidth superconducting variable coupler

被引:9
作者
Chang, H. -S. [1 ]
Satzinger, K. J. [1 ,2 ,5 ]
Zhong, Y. P. [1 ]
Bienfait, A. [1 ,6 ]
Chou, M. -H. [1 ,3 ]
Conner, C. R. [1 ]
Dumur, E. [1 ,4 ,7 ]
Grebel, J. [1 ]
Peairs, G. A. [1 ,2 ]
Povey, R. G. [1 ,3 ]
Cleland, A. N. [1 ,4 ,5 ]
机构
[1] Univ Chicago, Pritzker Sch Mol Engn, Chicago, IL 60637 USA
[2] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[3] Univ Chicago, Dept Phys, Chicago, IL 60637 USA
[4] Argonne Natl Lab, Argonne, IL 60439 USA
[5] Google, Santa Barbara, CA 93117 USA
[6] Univ Claude Bernard, ENS Lyon, Univ Lyon, Lab Phys,CNRS, F-69342 Lyon, France
[7] Univ Grenoble Alpes, CEA, INAC Pheliqs, QuantECA, F-38000 Grenoble, France
基金
美国国家科学基金会;
关键词
ENTANGLEMENT;
D O I
10.1063/5.0028840
中图分类号
O59 [应用物理学];
学科分类号
摘要
Variable microwave-frequency couplers are highly useful components in classical communication systems and likely will play an important role in quantum communication applications. Conventional semiconductor-based microwave couplers have been used with superconducting quantum circuits, enabling, for example, the in situ measurements of multiple devices via a common readout chain. However, the semiconducting elements are lossy and furthermore dissipate energy when switched, making them unsuitable for cryogenic applications requiring rapid, repeated switching. Superconducting Josephson junction-based couplers can be designed for dissipation-free operation with fast switching and are easily integrated with superconducting quantum circuits. These enable on-chip, quantum-coherent routing of microwave photons, providing an appealing alternative to semiconductor switches. Here, we present and characterize a chip-based broadband microwave variable coupler, tunable over 4-8GHz with over 1.5GHz instantaneous bandwidth, based on the superconducting quantum interference device with two parallel Josephson junctions. The coupler is dissipation-free and features large on-off ratios in excess of 40dB, and the coupling can be changed in about 10ns. The simple design presented here can be readily integrated with superconducting qubit circuits and can be easily generalized to realize a four- or more port device. Published under license by AIP Publishing.
引用
收藏
页数:5
相关论文
共 21 条
  • [1] Abdo B., 2018, U.S. patent, Patent No. 9966926
  • [2] [Anonymous], 2011, MICROWAVE ENG
  • [3] Quantum supremacy using a programmable superconducting processor
    Arute, Frank
    Arya, Kunal
    Babbush, Ryan
    Bacon, Dave
    Bardin, Joseph C.
    Barends, Rami
    Biswas, Rupak
    Boixo, Sergio
    Brandao, Fernando G. S. L.
    Buell, David A.
    Burkett, Brian
    Chen, Yu
    Chen, Zijun
    Chiaro, Ben
    Collins, Roberto
    Courtney, William
    Dunsworth, Andrew
    Farhi, Edward
    Foxen, Brooks
    Fowler, Austin
    Gidney, Craig
    Giustina, Marissa
    Graff, Rob
    Guerin, Keith
    Habegger, Steve
    Harrigan, Matthew P.
    Hartmann, Michael J.
    Ho, Alan
    Hoffmann, Markus
    Huang, Trent
    Humble, Travis S.
    Isakov, Sergei V.
    Jeffrey, Evan
    Jiang, Zhang
    Kafri, Dvir
    Kechedzhi, Kostyantyn
    Kelly, Julian
    Klimov, Paul V.
    Knysh, Sergey
    Korotkov, Alexander
    Kostritsa, Fedor
    Landhuis, David
    Lindmark, Mike
    Lucero, Erik
    Lyakh, Dmitry
    Mandra, Salvatore
    McClean, Jarrod R.
    McEwen, Matthew
    Megrant, Anthony
    Mi, Xiao
    [J]. NATURE, 2019, 574 (7779) : 505 - +
  • [4] On-demand quantum state transfer and entanglement between remote microwave cavity memories
    Axline, Christopher J.
    Burkhart, Luke D.
    Pfaff, Wolfgang
    Zhang, Mengzhen
    Chou, Kevin
    Campagne-Ibarcq, Philippe
    Reinhold, Philip
    Frunzio, Luigi
    Girvin, S. M.
    Jiang, Liang
    Devoret, M. H.
    Schoelkopf, R. J.
    [J]. NATURE PHYSICS, 2018, 14 (07) : 705 - +
  • [5] Burkhart L. D., 2020, ARXIV200406168
  • [6] Deterministic Remote Entanglement of Superconducting Circuits through Microwave Two-Photon Transitions
    Campagne-Ibarcq, P.
    Zalys-Geller, E.
    Narla, A.
    Shankar, S.
    Reinhold, P.
    Burkhart, L.
    Axline, C.
    Pfaff, W.
    Frunzio, L.
    Schoelkopf, R. J.
    Devoret, M. H.
    [J]. PHYSICAL REVIEW LETTERS, 2018, 120 (20)
  • [7] Remote Entanglement via Adiabatic Passage Using a Tunably Dissipative Quantum Communication System
    Chang, H-S
    Zhong, Y. P.
    Bienfait, A.
    Chou, M-H
    Conner, C. R.
    Dumur, E.
    Grebel, J.
    Peairs, G. A.
    Povey, R. G.
    Satzinger, K. J.
    Cleland, A. N.
    [J]. PHYSICAL REVIEW LETTERS, 2020, 124 (24)
  • [8] General purpose multiplexing device for cryogenic microwave systems
    Chapman, Benjamin J.
    Moores, Bradley A.
    Rosenthal, Eric I.
    Kerckhoff, Joseph
    Lehnert, K. W.
    [J]. APPLIED PHYSICS LETTERS, 2016, 108 (22)
  • [9] Cryogenic Control Architecture for Large-Scale Quantum Computing
    Hornibrook, J. M.
    Colless, J. I.
    Lamb, I. D. Conway
    Pauka, S. J.
    Lu, H.
    Gossard, A. C.
    Watson, J. D.
    Gardner, G. C.
    Fallahi, S.
    Manfra, M. J.
    Reilly, D. J.
    [J]. PHYSICAL REVIEW APPLIED, 2015, 3 (02):
  • [10] Deterministic quantum state transfer and remote entanglement using microwave photons
    Kurpiers, P.
    Magnard, P.
    Walter, T.
    Royer, B.
    Pechal, M.
    Heinsoo, J.
    Salathe, Y.
    Akin, A.
    Storz, S.
    Besse, J. -C.
    Gasparinetti, S.
    Blais, A.
    Wallraff, A.
    [J]. NATURE, 2018, 558 (7709) : 264 - +