ONE RESULT ON BOUNDEDNESS OF THE HILBERT TRANSFORM

被引:0
作者
Bekbayev, N. T. [1 ]
Tulenov, K. S. [1 ,2 ]
机构
[1] Inst Math & Math Modeling, Alma Ata, Kazakhstan
[2] Al Farabi Kazakh Natl Univ, Alma Ata, Kazakhstan
来源
JOURNAL OF MATHEMATICS MECHANICS AND COMPUTER SCIENCE | 2022年 / 113卷 / 01期
关键词
Symmetric (quasi-)Banach function space; Hilbert transform; Calderon operator; Marcinkiewicz space; RANGE;
D O I
10.26577/JMMCS.2022.v113.i1.02
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In mathematics and in signal theory, the Hilbert transform is an important linear operator that takes a real-valued function and produces another real-valued function. The Hilbert transform is a linear operator which arises from the study of boundary values of the real and imaginary parts of analytic functions. Also, it is a widely used tool in signal processing. The Cauchy integral is a figurative way to motivate the Hilbert transform. The complex view helps us to relate the Hilbert transform to something more concrete and understandable. Moreover, the Hilbert transform is closely connected with many operators in harmonic analysis such as Laplace and Fourier transforms which have numerous application in partial and ordinary differential equations. In this paper, we study boundedness properties of the classical (singular) Hilbert transform acting on Marcinkiewicz spaces. More precisely, we obtain if and only if condition for boundedness of the Hilbert transform in Marcinkiewicz function spaces.
引用
收藏
页码:17 / 24
页数:8
相关论文
共 11 条
  • [1] On boundedness of the Hilbert transform on Marcinkiewicz spaces
    Bekbayev, N. T.
    Tulenov, K. S.
    [J]. BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2020, 100 (04): : 26 - 32
  • [2] Bennett C., 1988, INTERPOLATION OPERAT
  • [3] Boyd D, 1966, HILBERT TRANSFORMATI
  • [4] HILBERT TRANSFORM ON REARRANGEMENT-INVARIANT SPACES
    BOYD, DW
    [J]. CANADIAN JOURNAL OF MATHEMATICS, 1967, 19 (03): : 599 - &
  • [5] KREIN S. G., 1982, Amer. Math. Soc.
  • [6] Lindenstrauss J., 1979, Ergebnisse der Mathematik und ihrer Grenzgebiete, V97
  • [7] Meyer-Nieberg P., 1991, BANACH LATTICES
  • [8] The boundedness of the Hilbert transformation from one rearrangement invariant Banach space into another and applications
    Sukochev, F.
    Tulenov, K.
    Zanin, D.
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 167
  • [9] The optimal range of the Calderon operator and its applications
    Sukochev, F.
    Tulenov, K.
    Zanin, D.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (10) : 3513 - 3559
  • [10] The optimal symmetric quasi-Banach range of the discrete Hilbert transform
    Tulenov, K.
    [J]. ARCHIV DER MATHEMATIK, 2019, 113 (06) : 649 - 660