TiP2O7 and Expanded Graphite Nanocomposite as Anode Material for Aqueous Lithium-Ion Batteries

被引:59
作者
Wen, Yunping
Chen, Long
Pang, Ying
Guo, Zhaowei
Bin, Duan
Wang, Yong-gang
Wang, Congxiao
Xia, Yongyao [1 ]
机构
[1] Fudan Univ, Dept Chem, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
aqueous lithium-ion batteries; anode materials; TiP2O7; expanded graphite; H-2 evolution reaction; CYCLING STABILITY; ELECTROCHEMICAL PERFORMANCE; INTERCALATION ELECTRODE; SPINEL LIMN2O4; HIGH-POWER; CARBON; NATI2(PO4)(3); SUPERCAPACITORS; SUPERSTRUCTURE; LITI2(PO4)(3);
D O I
10.1021/acsami.6b14856
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This paper reports a facile sol gel synthesis method to successfully prepare the TiP2O7/expanded graphite (EG) nanocomposite as an advanced anode material for aqueous lithium-ion batteries. The constructed TiP2O7 nanocomposites (50-100 nm) are in situ encapsulated in the pore and layer structure of expanded graphite with good conductivity and high specific surface area. As a consequence, the resulting Tip(2)O(7)/EG electrode exhibits a reversible capacity of 66 mAh g(-1) at 0.1 A g(-1) with an appropriate potential of -0.6 V before hydrogen evolution in aqueous electrolytes, and also demonstrates greatly enhanced cycling stability with 75% capacity retention after 1000 cycles at the current density of 0.S A g(-1). A full cell consisting of TiP2O7/EG anode, LiMn2O4 cathode, and 1 M Li2SO4 electrolyte delivers a specific energy of 60 Wh kg(-1) calculated on the weight of both cathode and anode materials with an operational voltage of 1.4 V. It also exhibits superior rate capability and remarkable cycling performance with a capacity maintenance of 66% over 500 cycles at 0.2 A CI and 61% at 1 A over 2000 cycles.
引用
收藏
页码:8075 / 8082
页数:8
相关论文
共 41 条
[1]   Hybrid supercapacitor with nano-TiP2O7 as intercalation electrode [J].
Aravindan, V. ;
Reddy, M. V. ;
Madhavi, S. ;
Mhaisalkar, S. G. ;
Rao, G. V. Subba ;
Chowdari, B. V. R. .
JOURNAL OF POWER SOURCES, 2011, 196 (20) :8850-8854
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]  
Bard A.J., 2001, Electrochemical Methods: Fundamentals and Applications, V2nd, P160
[4]   Green energy storage chemistries based on neutral aqueous electrolytes [J].
Chang, Zheng ;
Yang, Yaqiong ;
Li, Minxia ;
Wang, Xiaowei ;
Wu, Yuping .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (28) :10739-10755
[5]   Electrochemical Profile of LiTi2(PO4)3 and NaTi2(PO4)3 in Lithium, Sodium or Mixed Ion Aqueous Solutions [J].
Chen, Long ;
Liu, Jingyuan ;
Guo, Zhaowei ;
Wang, Yonggang ;
Wang, Congxiao ;
Xia, Yongyao .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (06) :A904-A910
[6]   High-voltage aqueous battery approaching 3 V using an acidic-alkaline double electrolyte [J].
Chen, Long ;
Guo, Ziyang ;
Xia, Yongyao ;
Wang, Yonggang .
CHEMICAL COMMUNICATIONS, 2013, 49 (22) :2204-2206
[7]   A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications [J].
Du Pasquier, A ;
Plitz, I ;
Menocal, S ;
Amatucci, G .
JOURNAL OF POWER SOURCES, 2003, 115 (01) :171-178
[8]   Electrochemical behavior of thin-film LiMn2O4 electrode in aqueous media [J].
Eftekhari, A .
ELECTROCHIMICA ACTA, 2001, 47 (03) :495-499
[9]   Preparation and electrochemical performances of submicro-TiP2O7 cathode for lithium ion batteries [J].
Hao, Yuwan ;
Wu, Chao ;
Cui, Yongli ;
Xu, Kun ;
Yuan, Zheng ;
Zhuang, Quanchao .
IONICS, 2014, 20 (08) :1079-1085
[10]   Development of a high-power lithium-ion battery [J].
Jansen, AN ;
Kahaian, AJ ;
Kepler, KD ;
Nelson, PA ;
Amine, K ;
Dees, DW ;
Vissers, DR ;
Thackeray, MM .
JOURNAL OF POWER SOURCES, 1999, 81 :902-905