Development and Validation of a Predictive Model for Coronary Artery Disease Using Machine Learning

被引:15
作者
Wang, Chen [1 ]
Zhao, Yue [1 ]
Jin, Bingyu [1 ]
Gan, Xuedong [2 ]
Liang, Bin [1 ]
Xiang, Yang [1 ]
Zhang, Xiaokang [1 ]
Lu, Zhibing [2 ]
Zheng, Fang [1 ]
机构
[1] Wuhan Univ, Zhongnan Hosp, Ctr Gene Diag, Dept Lab Med, Wuhan, Peoples R China
[2] Wuhan Univ, Zhongnan Hosp, Dept Cardiol, Wuhan, Peoples R China
来源
FRONTIERS IN CARDIOVASCULAR MEDICINE | 2021年 / 8卷
基金
中国国家自然科学基金;
关键词
coronary artery disease; prediction model; machine learning; random forest; primary prevention; HEART-DISEASE; RISK-FACTORS; CARDIOVASCULAR-DISEASE; CHOLESTEROL; TRIGLYCERIDES; MECHANISMS; HDL; APOLIPOPROTEINS; ATHEROSCLEROSIS; HYPERTENSION;
D O I
10.3389/fcvm.2021.614204
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Early identification of coronary artery disease (CAD) can prevent the progress of CAD and effectually lower the mortality rate, so we intended to construct and validate a machine learning model to predict the risk of CAD based on conventional risk factors and lab test data. There were 3,112 CAD patients and 3,182 controls enrolled from three centers in China. We compared the baseline and clinical characteristics between two groups. Then, Random Forest algorithm was used to construct a model to predict CAD and the model was assessed by receiver operating characteristic (ROC) curve. In the development cohort, the Random Forest model showed a good AUC 0.948 (95%CI: 0.941-0.954) to identify CAD patients from controls, with a sensitivity of 90%, a specificity of 85.4%, a positive predictive value of 0.863 and a negative predictive value of 0.894. Validation of the model also yielded a favorable discriminatory ability with the AUC, sensitivity, specificity, positive predictive value, and negative predictive value of 0.944 (95%CI: 0.934-0.955), 89.5%, 85.8%, 0.868, and 0.886 in the validation cohort 1, respectively, and 0.940 (95%CI: 0.922-0.960), 79.5%, 94.3%, 0.932, and 0.823 in the validation cohort 2, respectively. An easy-to-use tool that combined 15 indexes to assess the CAD risk was constructed and validated using Random Forest algorithm, which showed favorable predictive capability (). Our model is extremely valuable for clinical practice, which will be helpful for the management and primary prevention of CAD patients.
引用
收藏
页数:9
相关论文
共 50 条
[1]   The role of triglyceride-rich lipoprotein families in the progression of atherosclerotic lesions as determined by sequential coronary angiography from a controlled clinical trial [J].
Alaupovic, P ;
Mack, WJ ;
KnightGibson, C ;
Hodis, HN .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 1997, 17 (04) :715-722
[2]   Risk factors for myocardial infarction in women and men: insights from the INTERHEART study [J].
Anand, Sonia S. ;
Islam, Shofiqul ;
Rosengren, Annika ;
Franzosi, Maria Grazia ;
Steyn, Krisela ;
Yusufali, Afzal Hussein ;
Keltai, Matyas ;
Diaz, Rafael ;
Rangarajan, Sumathy ;
Yusuf, Salim .
EUROPEAN HEART JOURNAL, 2008, 29 (07) :932-940
[3]   Dietary cholesterol and cardiovascular disease: a systematic review and meta-analysis [J].
Berger, Samantha ;
Raman, Gowri ;
Vishwanathan, Rohini ;
Jacques, Paul F. ;
Johnson, Elizabeth J. .
AMERICAN JOURNAL OF CLINICAL NUTRITION, 2015, 102 (02) :276-294
[4]   Mechanisms underlying adverse effects of HDL on eNOS-activating pathways in patients with coronary artery disease [J].
Besler, Christian ;
Heinrich, Kathrin ;
Rohrer, Lucia ;
Doerries, Carola ;
Riwanto, Meliana ;
Shih, Diana M. ;
Chroni, Angeliki ;
Yonekawa, Keiko ;
Stein, Sokrates ;
Schaefer, Nicola ;
Mueller, Maja ;
Akhmedov, Alexander ;
Daniil, Georgios ;
Manes, Costantina ;
Templin, Christian ;
Wyss, Christophe ;
Maier, Willibald ;
Tanner, Felix C. ;
Matter, Christian M. ;
Corti, Roberto ;
Furlong, Clement ;
Lusis, Aldons J. ;
von Eckardstein, Arnold ;
Fogelman, Alan M. ;
Luescher, Thomas F. ;
Landmesser, Ulf .
JOURNAL OF CLINICAL INVESTIGATION, 2011, 121 (07) :2693-2708
[5]   Genetics of lipoprotein abnormalities associated with coronary heart disease susceptibility [J].
Breslow, JL .
ANNUAL REVIEW OF GENETICS, 2000, 34 :233-254
[6]   Ezetimibe Added to Statin Therapy after Acute Coronary Syndromes [J].
Cannon, Christopher P. ;
Blazing, Michael A. ;
Giugliano, Robert P. ;
McCagg, Amy ;
White, Jennifer A. ;
Theroux, Pierre ;
Darius, Harald ;
Lewis, Basil S. ;
Ophuis, Ton Oude ;
Jukema, J. Wouter ;
De Ferrari, Gaetano M. ;
Ruzyllo, Witold ;
De Lucca, Paul ;
Im, KyungAh ;
Bohula, Erin A. ;
Reist, Craig ;
Wiviott, Stephen D. ;
Tershakovec, Andrew M. ;
Musliner, Thomas A. ;
Braunwald, Eugene ;
Califf, Robert M. .
NEW ENGLAND JOURNAL OF MEDICINE, 2015, 372 (25) :2387-2397
[7]  
CASTELLI WP, 1988, CAN J CARDIOL, V4, pA5
[8]   Contributions of the Framingham Heart Study to the Epidemiology of Coronary Heart Disease [J].
Chen, George ;
Levy, Daniel .
JAMA CARDIOLOGY, 2016, 1 (07) :825-830
[9]   The impact of demographic and risk factor changes on coronary heart disease deaths in Beijing, 1999-2010 [J].
Cheng, Jun ;
Zhao, Dong ;
Zeng, Zhechun ;
Critchley, Julia Alison ;
Liu, Jing ;
Wang, Wei ;
Sun, Jiayi ;
Capewell, Simon .
BMC PUBLIC HEALTH, 2009, 9
[10]   Exacerbation of atherosclerosis by hypertension - Potential mechanisms and clinical implications [J].
Chobanian, AV ;
Alexander, RW .
ARCHIVES OF INTERNAL MEDICINE, 1996, 156 (17) :1952-1956