Application of machine learning in the diagnosis of axial spondyloarthritis

被引:23
|
作者
Walsh, Jessica A. [1 ]
Rozycki, Martin [2 ]
Yi, Esther [3 ,4 ]
Park, Yujin [5 ]
机构
[1] Univ Utah, Sch Med, 50 N Med Dr, Salt Lake City, UT 84132 USA
[2] HVH Precis Analyt, Wayne, PA USA
[3] Univ Texas Austin, Austin, TX 78712 USA
[4] Baylor Scott & White Hlth, Temple, TX USA
[5] Novartis Pharmaceut, E Hanover, NJ USA
关键词
ankylosing spondylitis; axial spondyloarthritis; machine learning; SOCIETY CLASSIFICATION CRITERIA; ANKYLOSING-SPONDYLITIS; BACK-PAIN; RHEUMATOID-ARTHRITIS; SJOGRENS-SYNDROME; HEALTH; MODEL; ESTABLISHMENT; EPIDEMIOLOGY; PREVALENCE;
D O I
10.1097/BOR.0000000000000612
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Purpose of review In this review article, we describe the development and application of machine-learning models in the field of rheumatology to improve the detection and diagnosis rates of underdiagnosed rheumatologic conditions, such as ankylosing spondylitis and axial spondyloarthritis (axSpA). Recent findings In an attempt to aid in the earlier diagnosis of axSpA, we developed machine-learning models to predict a diagnosis of ankylosing spondylitis and axSpA using administrative claims and electronic medical record data. Machine-learning algorithms based on medical claims data predicted the diagnosis of ankylosing spondylitis better than a model developed based on clinical characteristics of ankylosing spondylitis. With additional clinical data, machine-learning algorithms developed using electronic medical records identified patients with axSpA with 82.6-91.8% accuracy. These two algorithms have helped us understand potential opportunities and challenges associated with each data set and with different analytic approaches. Efforts to refine and validate these machine-learning models are ongoing. Summary We discuss the challenges and benefits of machine-learning models in healthcare, along with potential opportunities for its application in the field of rheumatology, particularly in the early diagnosis of axSpA and ankylosing spondylitis.
引用
收藏
页码:362 / 367
页数:6
相关论文
共 50 条
  • [31] Interleukin-22 and the diagnosis of axial spondyloarthritis
    Slouma, Maroua
    Kharrat, Lobna
    Gharsallah, Imen
    INTERNATIONAL JOURNAL OF RHEUMATIC DISEASES, 2022, 25 (02) : 236 - 237
  • [32] The role of imaging in the diagnosis and management of axial spondyloarthritis
    Walter P. Maksymowych
    Nature Reviews Rheumatology, 2019, 15 : 657 - 672
  • [33] The role of imaging in the diagnosis and management of axial spondyloarthritis
    Maksymowych, Walter P.
    NATURE REVIEWS RHEUMATOLOGY, 2019, 15 (11) : 657 - 672
  • [34] Choose wisely: imaging for diagnosis of axial spondyloarthritis
    Diekhoff, Torsten
    Eshed, Iris
    Radny, Felix
    Ziegeler, Katharina
    Proft, Fabian
    Greese, Juliane
    Deppe, Dominik
    Biesen, Robert
    Hermann, Kay Geert
    Poddubnyy, Denis
    ANNALS OF THE RHEUMATIC DISEASES, 2022, 81 (02) : 237 - 242
  • [35] Disparities in Time to Diagnosis for Radiographic Axial Spondyloarthritis
    Ferrandiz, Renato
    Rabasa, Gabriela
    Gasman, Sarah
    Mcginley, Brooke
    Stovall, Rachael
    Jafarzadeh, S. Reza
    Liew, Jean
    Dubreuil, Maureen
    ARTHRITIS & RHEUMATOLOGY, 2024, 76 : 2070 - 2072
  • [36] Classification, Diagnosis, and Referral of Patients with Axial Spondyloarthritis
    Braun, Juergen
    Sieper, Joachim
    RHEUMATIC DISEASE CLINICS OF NORTH AMERICA, 2012, 38 (03) : 477 - +
  • [37] CHOOSE WISELY: IMAGING FOR DIAGNOSIS OF AXIAL SPONDYLOARTHRITIS
    Diekhoff, T.
    Eshed, I.
    Radny, F.
    Ziegeler, K.
    Proft, F.
    Greese, J.
    Deppe, D.
    Biesen, R.
    Hermann, K. G.
    Poddubnyy, D.
    ANNALS OF THE RHEUMATIC DISEASES, 2021, 80 : 156 - 157
  • [38] A case of axial undifferentiated spondyloarthritis diagnosis and management
    Martin Rudwaleit
    Joachim Sieper
    Nature Clinical Practice Rheumatology, 2007, 3 : 298 - 303
  • [39] DEVELOPING A DEEP LEARNING MODEL ON CONVENTIONAL X-RAYS IN THE DIAGNOSIS OF AXIAL SPONDYLOARTHRITIS
    Karadag, D. Temiz
    San, S.
    Inner, B.
    Kaplan, K.
    Cakir, O.
    Gokcen, N.
    Yazici, A.
    Cefle, A.
    ANNALS OF THE RHEUMATIC DISEASES, 2022, 81 : 1485 - 1486
  • [40] EARLY AND ACCURATE DIAGNOSIS OF PATIENTS WITH AXIAL SPONDYLOARTHRITIS USING MACHINE LEARNING: A PREDICTIVE ANALYSIS FROM ELECTRONIC HEALTH RECORDS IN THE UNITED KINGDOM
    Sengupta, Raj
    Narasimham, Shruti
    Mato, Borja S.
    Meglic, Matic
    Perella, Chiara
    Pamies, Paula
    Emery, Paul
    RHEUMATOLOGY, 2022, 61