Trees with the second largest number of maximal independent sets

被引:12
作者
Jou, Min-Jen [1 ]
Lin, Jenq-Jong [1 ]
机构
[1] Ling Tung Univ, Taichung 40852, Taiwan
关键词
Maximal independent set; Tree; Forest; Extremal graph; FIBONACCI NUMBERS; GRAPHS;
D O I
10.1016/j.disc.2009.02.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A maximal independent set is an independent set that is not a proper subset of any other independent set. In this paper, we determine the second largest number of maximal independent sets among all trees and forests of order n >= 4. We also characterize those extremal graphs achieving these values. (C) 2009 Published by Elsevier B.V.
引用
收藏
页码:4469 / 4474
页数:6
相关论文
共 10 条
[1]   THE NUMBER OF MAXIMAL INDEPENDENT SETS IN TRIANGLE-FREE GRAPHS [J].
HUJTER, M ;
TUZA, Z .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1993, 6 (02) :284-288
[2]   Graphs with the second largest number of maximal independent sets [J].
Jin, Zemin ;
Li, Xueliang .
DISCRETE MATHEMATICS, 2008, 308 (23) :5864-5870
[3]  
Jou M.J., 1991, THESIS NATL CENTRAL
[4]  
Jou M. J., 1995, P 2 AS MATH C, P265
[5]  
Jou MJ, 2002, ARS COMBINATORIA, V65, P265
[6]   Maximal independent sets in graphs with at most one cycle [J].
Jou, MJ ;
Chang, GJ .
DISCRETE APPLIED MATHEMATICS, 1997, 79 (1-3) :67-73
[7]   Graphs, partitions and Fibonacci numbers [J].
Knopfmacher, Arnold ;
Tichy, Robert F. ;
Wagner, Stephan ;
Ziegler, Volker .
DISCRETE APPLIED MATHEMATICS, 2007, 155 (10) :1175-1187
[8]   ON CLIQUES IN GRAPHS [J].
MOON, JW ;
MOSER, L .
ISRAEL JOURNAL OF MATHEMATICS, 1965, 3 (01) :23-&
[9]  
PRODINGER H, 1982, FIBONACCI QUART, V20, P16
[10]  
Wagner SG, 2006, FIBONACCI QUART, V44, P362