A localized interaction surface for voltage-sensing domains on the pore domain of a K+ channel

被引:107
作者
Li-Smerin, YY [1 ]
Hackos, DH [1 ]
Swartz, KJ [1 ]
机构
[1] NINDS, Mol Physiol & Biophys Unit, NIH, Bethesda, MD 20892 USA
关键词
D O I
10.1016/S0896-6273(00)80904-6
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Voltage-gated K+ channels contain a central pore domain and four surrounding voltage-sensing domains. How and where changes in the structure of the voltage-sensing domains couple to the pore domain so as to gate ion conduction is not understood. The crystal structure of KcsA, a bacterial K+ channel homologous to the pore domain of voltage-gated K+ channels, provides a starting point for addressing this question. Guided by this structure, we used tryptophan-scanning mutagenesis on the transmembrane shell of the pore domain in the Shaker voltage-gated K+ channel to localize potential protein-protein and protein-lipid interfaces. Some mutants cause only minor changes in gating and when mapped onto the KcsA structure cluster away from the interface between pore domain subunits. In contrast, mutants producing large changes in gating tend to cluster near this interface. These results imply that voltage-sensing domains interact with localized regions near the interface between adjacent pore domain subunits.
引用
收藏
页码:411 / 423
页数:13
相关论文
共 62 条
[31]   MUTATIONS AFFECTING TEA BLOCKADE AND ION PERMEATION IN VOLTAGE-ACTIVATED K+ CHANNELS [J].
MACKINNON, R ;
YELLEN, G .
SCIENCE, 1990, 250 (4978) :276-279
[32]   Structural conservation in prokaryotic and eukaryotic potassium channels [J].
MacKinnon, R ;
Cohen, SL ;
Kuo, AL ;
Lee, A ;
Chait, BT .
SCIENCE, 1998, 280 (5360) :106-109
[33]   DETERMINATION OF THE SUBUNIT STOICHIOMETRY OF A VOLTAGE-ACTIVATED POTASSIUM CHANNEL [J].
MACKINNON, R .
NATURE, 1991, 350 (6315) :232-235
[34]   Direct physical measure of conformational rearrangement underlying potassium channel gating [J].
Mannuzzu, LM ;
Moronne, MM ;
Isacoff, EY .
SCIENCE, 1996, 271 (5246) :213-216
[35]   Helical structure and packing orientation of the S2 segment in the Shaker K+ channel [J].
Monks, SA ;
Needleman, DJ ;
Miller, C .
JOURNAL OF GENERAL PHYSIOLOGY, 1999, 113 (03) :415-423
[36]   ELECTROSTATIC INTERACTIONS OF S4 VOLTAGE SENSOR IN SHAKER K+ CHANNEL [J].
PAPAZIAN, DM ;
SHAO, XM ;
SEOH, SA ;
MOCK, AF ;
HUANG, Y ;
WAINSTOCK, DH .
NEURON, 1995, 14 (06) :1293-1301
[37]   ALTERATION OF VOLTAGE-DEPENDENCE OF SHAKER POTASSIUM CHANNEL BY MUTATIONS IN THE S4-SEQUENCE [J].
PAPAZIAN, DM ;
TIMPE, LC ;
JAN, YN ;
JAN, LY .
NATURE, 1991, 349 (6307) :305-310
[38]   Three-dimensional architecture and gating mechanism of a K+ channel studied by EPR spectroscopy [J].
Perozo, E ;
Cortes, DM ;
Cuello, LG .
NATURE STRUCTURAL BIOLOGY, 1998, 5 (06) :459-469
[39]   GATING CURRENTS IN SHAKER K+ CHANNELS - IMPLICATIONS FOR ACTIVATION AND INACTIVATION MODELS [J].
PEROZO, E ;
PAPAZIAN, DM ;
STEFANI, E ;
BEZANILLA, F .
BIOPHYSICAL JOURNAL, 1992, 62 (01) :160-171
[40]   Structural rearrangements underlying K+-channel activation gating [J].
Perozo, E ;
Cortes, DM ;
Cuello, LG .
SCIENCE, 1999, 285 (5424) :73-78