Intraoperative Impedance-Based Estimation of Cochlear Implant Electrode Array Insertion Depth

被引:45
作者
Aebischer, Philipp [1 ,2 ]
Meyer, Stefan [3 ,4 ]
Caversaccio, Marco [3 ,4 ]
Wimmer, Wilhelm [3 ,4 ]
机构
[1] Univ Hosp Bern, Inselspital, Dept Otolaryngol Head & Neck Surg, CH-3010 Bern, Switzerland
[2] Univ Bern, Hearing Res Lab, ARTORG Ctr Biomed Engn Res, CH-3012 Bern, Switzerland
[3] Univ Hosp Bern, Inselspital, Dept Otolaryngol Head & Neck Surg, Bern, Switzerland
[4] Univ Bern, Hearing Res Lab, ARTORG Ctr Biomed Engn Res, Bern, Switzerland
关键词
Biomedical measurement; telemetry; deafness; ear; electrodes; impedance; impedance measurement;
D O I
10.1109/TBME.2020.3006934
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective: Cochlear implant impedances are influenced by the intracochlear position of the electrodes. Herein, we present an intuitive approach to calculate tissue resistances from transimpedance recordings, ultimately enabling to estimate the insertion depth of cochlear implant electrodes. Methods: Electrode positions were measured in computed-tomography images of 20 subjects implanted with the same lateral wall cochlear implant model. The tissue resistances were estimated from intraoperative telemetry data using bivariate spline extrapolation from the transimpedance recordings. Using a phenomenological model, the electrode insertion depths were estimated. Results: The proposed method enabled the linear insertion depth of all electrodes to be estimated with an average error of 0.76 +/- 0.53 mm. Conclusion: Intraoperative telemetry recordings correlate with the linear and angular depth of electrode insertion, enabling estimations with an accuracy that can be useful for clinical applications. Significance: The proposed method can be used to objectively assess surgical outcomes during and after cochlear implantation based on non-invasive and readily available telemetry recordings.
引用
收藏
页码:545 / 555
页数:11
相关论文
共 44 条
[1]  
[Anonymous], 2019, MI1250 SYNCHRONY 2 S
[2]   Cochlear Implant Insertion Depth Prediction: A Temporal Bone Accuracy Study [J].
Anschuetz, Lukas ;
Weder, Stefan ;
Mantokoudis, Georgios ;
Kompis, Martin ;
Caversaccio, Marco ;
Wimmer, Wilhelm .
OTOLOGY & NEUROTOLOGY, 2018, 39 (10) :E996-E1001
[3]   Electrical Stimulation in the Human Cochlea: A Computational Study Based on High-Resolution Micro-CT Scans [J].
Bai, Siwei ;
Encke, Joerg ;
Obando-Leiton, Miguel ;
Weiss, Robin ;
Schaefer, Friederike ;
Eberharter, Jakob ;
Boehnke, Frank ;
Hemmert, Werner .
FRONTIERS IN NEUROSCIENCE, 2019, 13
[4]   The Internal Dimensions of the Cochlear Scalae With Special Reference to Cochlear Electrode Insertion Trauma [J].
Biedron, Slavomir ;
Prescher, Andreas ;
Ilgner, Justus ;
Westhofen, Martin .
OTOLOGY & NEUROTOLOGY, 2010, 31 (05) :731-737
[5]   An Evidence-Based Algorithm for Intraoperative Monitoring During Cochlear Implantation [J].
Cosetti, Maura K. ;
Troob, Scott H. ;
Latzman, Jonathan M. ;
Shapiro, William H. ;
Roland, John Thomas, Jr. ;
Waltzman, Susan B. .
OTOLOGY & NEUROTOLOGY, 2012, 33 (02) :169-176
[6]   Relationship Between Electrode- to- Modiolus Distance and Current Levels for Adults With Cochlear Implants [J].
Davis, Timothy J. ;
Zhang, Dongqing ;
Gifford, Rene H. ;
Dawant, Benoit M. ;
Labadie, Robert F. ;
Noble, Jack H. .
OTOLOGY & NEUROTOLOGY, 2016, 37 (01) :31-37
[7]  
de Rijk S. R., 2020, EAR HEARING
[8]   Telemetry changes over time in cochlear implant patients [J].
El Shennawy, Amira Maged ;
Mashaly, Mohamed Magued ;
Shabana, Mohamed Ibrahim ;
Sheta, Sarah Mohamed .
HEARING BALANCE AND COMMUNICATION, 2015, 13 (01) :24-31
[9]  
Escude Bernard, 2006, Audiol Neurootol, V11 Suppl 1, P27, DOI 10.1159/000095611
[10]   The Cochlear Implant: Historical Aspects and Future Prospects [J].
Eshraghi, Adrien A. ;
Nazarian, Ronen ;
Telischi, Fred F. ;
Rajguru, Suhrud M. ;
Truy, Eric ;
Gupta, Chhavi .
ANATOMICAL RECORD-ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, 2012, 295 (11) :1967-1980