Algorithm 854: Fortran 77 subroutines for computing the eigenvalues of Hamiltonian matrices II

被引:15
作者
Benner, Peter [1 ]
Kressner, Daniel
机构
[1] Tech Univ Chemnitz, Fak Math, D-09107 Chemnitz, Germany
[2] Univ Zagreb, Dept Math, Zagreb 10000, Croatia
来源
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE | 2006年 / 32卷 / 02期
关键词
algorithms; documentation; performance; algebraic Riccati equation; eigenvalues; Hamiltonian matrix; invariant subspaces; skew-Hamiltonian matrix; symplectic QR decomposition;
D O I
10.1145/1141885.1141895
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This article describes Fortran 77 subroutines for computing eigenvalues and invariant subspaces of Hamiltonian and skew-Hamiltonian matrices. The implemented algorithms are based on orthogonal symplectic decompositions, implying numerical backward stability as well as symmetry preservation for the computed eigenvalues. These algorithms are supplemented with balancing and block algorithms which can lead to considerable accuracy and performance improvements. As a by-product, an efficient implementation for computing symplectic QR decompositions is provided. We demonstrate the usefulness of the subroutines for several, practically relevant examples.
引用
收藏
页码:352 / 373
页数:22
相关论文
共 48 条
[1]  
Abels J., 1999, 199914 SLICOT
[2]  
Anderson E, 1999, LAPACK USERS GUIDE
[3]  
[Anonymous], 2002, MATLAB VERS 6 5
[4]   GENERALIZED EIGENPROBLEM ALGORITHMS AND SOFTWARE FOR ALGEBRAIC RICCATI-EQUATIONS [J].
ARNOLD, WF ;
LAUB, AJ .
PROCEEDINGS OF THE IEEE, 1984, 72 (12) :1746-1754
[5]  
Bai Z., 1989, International Journal of High Speed Computing, V1, P97, DOI 10.1142/S0129053389000068
[6]  
BAI ZJ, 1993, LINEAR ALGEBRA APPL, V186, P73
[7]   A numerically stable, structure preserving method for computing the eigenvalues of real Hamiltonian or symplectic pencils [J].
Benner, P ;
Mehrmann, V ;
Xu, HG .
NUMERISCHE MATHEMATIK, 1998, 78 (03) :329-358
[8]   Algorithm 800: Fortran 77 subroutines for computing the eigenvalues of Hamiltonian matrices I: The square-reduced method [J].
Benner, P ;
Byers, R ;
Barth, E .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2000, 26 (01) :49-77
[9]   Skew-Hamiltonian and Hamiltonian eigenvalue problems: Theory, algorithms and applications [J].
Benner, P ;
Kressner, D ;
Mehrmann, V .
PROCEEDINGS OF THE CONFERENCE ON APPLIED MATHEMATICS AND SCIENTIFIC COMPUTING, 2005, :3-39
[10]   Structure preservation: a challenge in computational control [J].
Benner, P ;
Kressner, D ;
Mehrmann, V .
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2003, 19 (07) :1243-1252