Removal of phosphate from water by a Fe-Mn binary oxide adsorbent

被引:378
作者
Zhang, Gaosheng [1 ,2 ]
Liu, Huijuan [1 ]
Liu, Ruiping [1 ]
Qu, Jiuhui [1 ]
机构
[1] Chinese Acad Sci, Ecoenvironm Sci Res Ctr, State Key Lab Environm Aquat Chem, Beijing 100085, Peoples R China
[2] Chinese Acad Sci, Yantai Inst Coastal Zone Res Sustainable Dev, Yantai 264003, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Fe-Mn binary oxide; Phosphate removal; Mechanism; Specific adsorption; WASTE-WATER; PHOSPHORUS REMOVAL; FLY-ASH; RED MUD; ADSORPTION; IRON; SOILS; MECHANISMS; GOETHITE; SORBENTS;
D O I
10.1016/j.jcis.2009.03.019
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Phosphate removal is important in the control of eutrophication of water bodies and adsorption is one of the promising approaches for this purpose. A Fe-Mn binary oxide adsorbent with a Fe/Mn molar ratio of 6:1 for phosphate removal was synthesized by a simultaneous oxidation and coprecipitation process. Laboratory experiments were carried out to investigate adsorption kinetics and equilibrium, in batch mode. The effects of different experimental parameters, namely contact time, initial phosphate concentration, solution pH, and ionic strength on the phosphate adsorption were investigated. The adsorption data were analyzed by both Freundlich and Langmuir isotherm models and the data were well fit by the Freundlich isotherm model. Kinetic data correlated well with the pseudo-second-order kinetic model, suggesting that the adsorption process might be chemical sorption. The maximal adsorption capacity was 36 mg/g at pH 5.6. The phosphate adsorption was highly pH dependent. The effects of anions such as Cl-, SO42-, and CO32- on phosphate removal were also investigated. The results suggest that the presence of these ions had no significant effect on phosphate removal. The phosphate removal was mainly achieved by the replacement of surface hydroxyl groups by the phosphate species and formation of inner-sphere surface complexes at the water/oxide interface. In addition, the adsorbed phosphate ions can be effectively desorbed by dilute NaOH solutions. This adsorbent, with large adsorption capacity and high selectivity, is therefore a very promising adsorbent for the removal of phosphate ions from aqueous solutions. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:168 / 174
页数:7
相关论文
共 41 条
[1]   Phosphate removal from water by red mud using crossflow microfiltration [J].
Akay, G ;
Keskinler, B ;
Çakici, A ;
Danis, U .
WATER RESEARCH, 1998, 32 (03) :717-726
[2]   Phosphorus removal by a synthetic iron oxide-gypsum compound [J].
Bastin, O ;
Janssens, F ;
Dufey, J ;
Peeters, A .
ECOLOGICAL ENGINEERING, 1999, 12 (3-4) :339-351
[3]   Improving phosphate removal of sand infiltration system using alkaline fly ash [J].
Cheung, KC ;
Venkitachalam, TH .
CHEMOSPHERE, 2000, 41 (1-2) :243-249
[4]   Phosphate adsorption on synthetic goethite and akaganeite [J].
Chitrakar, Ramesh ;
Tezuka, Satoko ;
Sonoda, Akinari ;
Sakane, Kohji ;
Ooi, Kenta ;
Hirotsu, Takahiro .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2006, 298 (02) :602-608
[5]   Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997-2003) [J].
de-Bashan, LE ;
Bashan, Y .
WATER RESEARCH, 2004, 38 (19) :4222-4246
[6]   THE POTENTIAL OF MICROALGAL BIOTECHNOLOGY - A REVIEW OF PRODUCTION AND USES OF MICROALGAE [J].
DELANOUE, J ;
DEPAUW, N .
BIOTECHNOLOGY ADVANCES, 1988, 6 (04) :725-770
[7]   Elimination of phosphorus from waste water by crystallization [J].
Donnert, D ;
Salecker, M .
ENVIRONMENTAL TECHNOLOGY, 1999, 20 (07) :735-742
[8]  
Freundlich H, 1906, Z PHYS CHEM-STOCH VE, V57, P385
[9]   Advanced phosphorus removal from membrane filtrates by adsorption on activated aluminium oxide and granulated ferric hydroxide [J].
Genz, A ;
Kornmüller, A ;
Jekel, M .
WATER RESEARCH, 2004, 38 (16) :3523-3530
[10]  
Giesler R, 2005, SOIL SCI SOC AM J, V69, P77