Uncovering the Chemistry of Cross-Linked Polymer Binders via Chemical Bonds for Silicon-Based Electrodes

被引:34
作者
Chen, Zhou [1 ]
Zhang, Huanrui [2 ]
Dong, Tiantian [2 ]
Mu, Pengzhou [2 ]
Rong, Xianchao [1 ]
Li, Zhongtao [1 ]
机构
[1] China Univ Petr East China, Coll Chem & Chem Engn, Qingdao 266101, Peoples R China
[2] Chinese Acad Sci, Qingdao Ind Energy Storage Res Inst, Qingdao Inst Bioenergy & Bioproc Technol, Qingdao 266101, Peoples R China
基金
中国国家自然科学基金;
关键词
polymer binder; silicon-based electrodes; cross-linked polymer binders via chemical bonds; cross-linking chemistries; construction methods; structure-performance relationships; HIGH-PERFORMANCE SILICON; LI-ION BATTERIES; SI-BASED ANODES; LOW-COST; CHITOSAN; CATIONS; METRICS;
D O I
10.1021/acsami.0c12519
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Great efforts have been devoted to the development of high-energy-density lithium-ion batteries (LIBs) to meet the requirements of emerging technologies such as electric cars, large-scale energy storage, and portable electronic devices. To this end, silicon-based electrodes have been increasingly regarded as promising electrode materials by virtue of their high theoretical capacity, low costs, environmental friendliness, and high natural abundance. It has been noted that during repeated cycling, severe challenges such as huge volume change remain to be solved prior to practical application, which boosts the development of advanced cross-linked binders via chemical bonds (CBCBs) beyond traditional PVDF binder. This is because CBCBs can effectively fix the electrode particles, inhibit the volume expansion of Si particles, and stabilize the solid electrolyte interface and thus can enable good cycling stability of silicon anode-based batteries. In light of these merits, CBCBs hence arouse much attention from both industry and academia. In this review, we present chemical/mechanical characteristics of CBCBs and systematically discuss the recent advancements of cross-linked binders via chemical bonding for silicon-based electrodes. Focus is placed on the cross-linking chemistries, construction methods and structure-performance relationships of CBCBs. Finally, the future development and performance optimization of CBCBs are proposed. This discussion will provide good insight into the structural design of CBCBs for silicon-based electrodes.
引用
收藏
页码:47164 / 47180
页数:17
相关论文
共 65 条
[1]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[2]  
Bland R., 2020, CHARGING ELECT VEHIC
[3]   Key Parameters Governing the Reversibility of Si/Carbon/CMC Electrodes for Li-Ion Batteries [J].
Bridel, J. -S. ;
Azais, T. ;
Morcrette, M. ;
Tarascon, J. -M. ;
Larcher, D. .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :1229-1241
[4]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[5]   Dual Cross-Linked Fluorinated Binder Network for High-Performance Silicon and Silicon Oxide Based Anodes in Lithium-Ion Batteries [J].
Cai, Yongjie ;
Li, Yuanyuan ;
Jin, Biyi ;
Ali, Abid ;
Ling, Min ;
Cheng, Dangguo ;
Lu, Jianguo ;
Hou, Yang ;
He, Qinggang ;
Zhan, Xiaoli ;
Chen, Fengqiu ;
Zhang, Qinghua .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (50) :46800-46807
[6]   Batteries and fuel cells for emerging electric vehicle markets [J].
Cano, Zachary P. ;
Banham, Dustin ;
Ye, Siyu ;
Hintennach, Andreas ;
Lu, Jun ;
Fowler, Michael ;
Chen, Zhongwei .
NATURE ENERGY, 2018, 3 (04) :279-289
[7]   Rational Design of a Multifunctional Binder for High-Capacity Silicon-Based Anodes [J].
Cao, Peng-Fei ;
Yang, Guang ;
Li, Bingrui ;
Zhang, Yiman ;
Zhao, Sheng ;
Zhang, Shuo ;
Erwin, Andrew ;
Zhang, Zhengcheng ;
Sokolov, Alexei P. ;
Nanda, Jagjit ;
Saito, Tomonori .
ACS ENERGY LETTERS, 2019, 4 (05) :1171-1180
[8]   In Situ Generation of Poly (Vinylene Carbonate) Based Solid Electrolyte with Interfacial Stability for LiCoO2 Lithium Batteries [J].
Chai, Jingchao ;
Liu, Zhihong ;
Ma, Jun ;
Wang, Jia ;
Liu, Xiaochen ;
Liu, Haisheng ;
Zhang, Jianjun ;
Cui, Guanglei ;
Chen, Liquan .
ADVANCED SCIENCE, 2017, 4 (02)
[9]   Cross-Linked Chitosan as an Efficient Binder for Si Anode of Li-ion Batteries [J].
Chen, Chao ;
Lee, Sang Ha ;
Cho, Misuk ;
Kim, Jaehoon ;
Lee, Youngkwan .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (04) :2658-2665
[10]   Exploring Chemical, Mechanical, and Electrical Functionalities of Binders for Advanced Energy-Storage Devices [J].
Chen, Hao ;
Ling, Min ;
Hencz, Luke ;
Ling, Han Yeu ;
Li, Gaoran ;
Lin, Zhan ;
Liu, Gao ;
Zhang, Shanqing .
CHEMICAL REVIEWS, 2018, 118 (18) :8936-8982