In operando synchrotron X-ray studies of a novel spinel (Ni0.2Co0.2Mn0.2Fe0.2Ti0.2)3O4 high-entropy oxide for energy storage applications

被引:93
|
作者
Chen, Tsung-Yi [1 ,2 ]
Wang, Syuan-Yu [1 ,2 ]
Kuo, Chun-Han [1 ,2 ]
Huang, Shao-Chu [1 ]
Lin, Ming-Hsien [3 ]
Li, Chih-Heng [1 ,2 ,4 ]
Chen, Hsin-Yi Tiffany [4 ]
Wang, Chun-Chieh [2 ,3 ]
Liao, Yen-Fa [5 ]
Lin, Chia-Ching [1 ]
Chang, Yu-Ming [1 ]
Yeh, Jien-Wei [1 ,2 ]
Lin, Su-Jien [1 ,2 ]
Chen, Tsan-Yao [4 ]
Chen, Han-Yi [1 ,2 ]
机构
[1] Natl Tsing Hua Univ, Dept Mat Sci & Engn, 101,Sect 2,Kuang Fu Rd, Hsinchu 30013, Taiwan
[2] High Entropy Mat Ctr, 101,Sect 2,Kuang Fu Rd, Hsinchu 30013, Taiwan
[3] Natl Def Univ, Chung Cheng Inst Technol, Dept Chem & Mat Engn, Taoyuan, Taiwan
[4] Natl Tsing Hua Univ, Dept Engn & Syst Sci, 101,Sect 2,Kuang Fu Rd, Hsinchu 30013, Taiwan
[5] Natl Synchrotron Radiat Res Ctr, 101 Hsin Ann Rd,Hsinchu Sci Pk, Hsinchu, Taiwan
关键词
LITHIUM-ION BATTERY; CAPACITY ANODE MATERIAL; HIGH-PERFORMANCE; CONVERSION REACTION; HOLLOW SPHERES; MECHANICAL-PROPERTIES; RARE-EARTH; NANOPARTICLES; FERRITE; ELECTRODES;
D O I
10.1039/d0ta06455f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High-entropy oxides (HEOs) consisting of multiple cations have garnered considerable attention in recent years because of their unique structures and functional properties, which have enabled various applications. An entropy-stabilized rock-salt-based HEO, namely, (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O, has recently been proposed as an anode material for lithium-ion batteries, and has exhibited promising features for energy storage applications with high capacity and stability. In this study, we utilized a simple solid-state sintering method to synthesize a single-phase spinel-structured HEO, (Ni0.2Co0.2Mn0.2Fe0.2Ti0.2)(3)O-4 (NCMFT), for the first time. As an anode material for lithium-ion batteries, NCMFT has a high capacity (similar to 560 mA h g(-1)) at a current density of 100 mA g(-1) and exhibits an excellent capacity retention of 100% after 100 cycles. Through in operando synchrotron X-ray absorption near edge structure and ex situ X-ray photoelectron spectroscopy analyses, we can understand the redox reactions that occur in the NCMFT anode during lithiation and delithiation. In operando synchrotron X-ray diffraction and ex situ transmission electron microscopy were used to analyze structural changes during the conversion reactions. In addition, the volume change behavior of the NCMFT anode was observed through in operando synchrotron transmission X-ray microscopy. Through the aforementioned analyses, the energy storage mechanism of NCMFT anodes was systematically investigated. This work provides various essential methods for understanding the mechanism of HEOs in energy storage applications.
引用
收藏
页码:21756 / 21770
页数:15
相关论文
共 50 条
  • [1] Evaluation of electrospun spinel-type high-entropy (Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)3O4, (Cr0.2Mn0.2Fe0.2Co0.2Zn0.2)3O4 and (Cr0.2Mn0.2Fe0.2Ni0.2Zn0.2)3O4 oxide nanofibers as electrocatalysts for oxygen evolution in alkaline medium
    Triolo, Claudia
    Schweidler, Simon
    Lin, Ling
    Pagot, Gioele
    Di Noto, Vito
    Breitung, Ben
    Santangelo, Saveria
    ENERGY ADVANCES, 2023, 2 (05): : 667 - 678
  • [2] Synthesis and functional properties of (Al0.2Co0.2Fe0.2Ni0.2Ti0.2)3O4 high entropy spinel oxide
    Mishra, Rajesh K.
    Minussi, F. B.
    Kumari, Priyanka
    Shahi, Rohit R.
    Araujo, E. B.
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2024, 194
  • [3] Nanostructured spinel high-entropy oxide (Fe0.2Mn0.2Co0.2Ni0.2Zn0.2)3O4 as a potential cathode for solid oxide fuel cells
    Lin, Zhuang
    Ma, Ben
    Chen, Zhaohui
    Zhou, Yingke
    CERAMICS INTERNATIONAL, 2023, 49 (14) : 23057 - 23067
  • [4] Preparation and lithium storage performance of K+-doped spinel (Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)3O4 high-entropy oxide anode materials
    Wang, Pengpeng
    Jia, Yanggang
    Shao, Xia
    Cheng, Jie
    Mao, Aiqin
    Tan, Jie
    Fang, Daolai
    Huagong Xuebao/CIESC Journal, 2022, 73 (12): : 5625 - 5637
  • [5] A Novel Spinel High-Entropy Oxide (Cr0.2Mn0.2Co0.2Ni0.2Zn0.2)3O4 as Anode Material for Lithium-Ion Batteries
    Jin, Changqing
    Wang, Yulong
    Dong, Haobin
    Wei, Yongxing
    Nan, Ruihua
    Jian, Zengyun
    Yang, Zhong
    Ding, Qingping
    INORGANICS, 2024, 12 (07)
  • [6] Preparation and Lithium Storage Performance of Spineltype Cobalt-free (Cr0.2Fe0.2Mn0.2Ni0.2X0.2)3O4 High-entropy Oxide
    Shao, Xia
    Bao, Mengfan
    Chen, Shijie
    Lin, Na
    Tan, Jie
    Mao, Aiqin
    Cailiao Yanjiu Xuebao/Chinese Journal of Materials Research, 2024, 38 (09): : 680 - 690
  • [7] High-entropy oxide Mg0.2Co0.2Fe0.2Ni0.2Zn0.2O: synthesis, X-ray diffraction and Mossbauer studies
    Musin, V. F.
    Zinnatullin, A. L.
    Vagizov, F. G.
    MAGNETIC RESONANCE IN SOLIDS, 2024, 26 (03)
  • [8] Preparation and sodium storage properties of spinel-type (Cr0.2Fe0.2Mn0.2Ni0.2Co0.2)3O4/rGO
    Li, Kaixiang
    Li, Huijun
    Zhao, Zhenxin
    Wang, Xiaomin
    CHEMISTRYSELECT, 2024, 9 (11):
  • [9] Spinel-type high-entropy (Co0.2Mn0.2Fe0.2Zn0.2Ti0.2)3O4 oxides constructed from disordered cations and oxygen vacancies
    Wang, Bing
    Yao, Jincheng
    Wang, Junhua
    Chang, Aimin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 897
  • [10] Mesoporous High-Entropy Oxide Thin Films: Electrocatalytic Water Oxidation on High-Surface-Area Spinel (Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)3O4 Electrodes
    Einert, Marcus
    Mellin, Maximilian
    Bahadorani, Niloufar
    Dietz, Christian
    Lauterbach, Stefan
    Hofmann, Jan P.
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (01) : 717 - 730