Classifying Breast Cancer Subtypes Using Deep Neural Networks Based on Multi-Omics Data

被引:64
作者
Lin, Yuqi [1 ]
Zhang, Wen [1 ]
Cao, Huanshen [2 ]
Li, Gaoyang [3 ]
Du, Wei [1 ]
机构
[1] Jilin Univ, Key Lab Symbol Computat & Knowledge Engn, Minist Educ, Coll Comp Sci & Technol, Changchun 130012, Peoples R China
[2] Arizona State Univ, Biodesign Inst, Ctr Fundamental & Appl Microbiom, Tempe, AZ 85287 USA
[3] Tongji Univ, Sch Life Sci & Technol, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金;
关键词
omics data integration; breast cancer subtype; deep neural networks; SELECTION; IDENTIFICATION;
D O I
10.3390/genes11080888
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
With the high prevalence of breast cancer, it is urgent to find out the intrinsic difference between various subtypes, so as to infer the underlying mechanisms. Given the available multi-omics data, their proper integration can improve the accuracy of breast cancer subtype recognition. In this study, DeepMO, a model using deep neural networks based on multi-omics data, was employed for classifying breast cancer subtypes. Three types of omics data including mRNA data, DNA methylation data, and copy number variation (CNV) data were collected from The Cancer Genome Atlas (TCGA). After data preprocessing and feature selection, each type of omics data was input into the deep neural network, which consists of an encoding subnetwork and a classification subnetwork. The results of DeepMO based on multi-omics on binary classification are better than other methods in terms of accuracy and area under the curve (AUC). Moreover, compared with other methods using single omics data and multi-omics data, DeepMO also had a higher prediction accuracy on multi-classification. We also validated the effect of feature selection on DeepMO. Finally, we analyzed the enrichment gene ontology (GO) terms and biological pathways of these significant genes, which were discovered during the feature selection process. We believe that the proposed model is useful for multi-omics data analysis.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 47 条
[1]   Luminal B Breast Cancer: Molecular Characterization, Clinical Management, and Future Perspectives [J].
Ades, Felipe ;
Zardavas, Dimitrios ;
Bozovic-Spasojevic, Ivana ;
Pugliano, Lina ;
Fumagalli, Debora ;
de Azambuja, Evandro ;
Viale, Giuseppe ;
Sotiriou, Christos ;
Piccart, Martine .
JOURNAL OF CLINICAL ONCOLOGY, 2014, 32 (25) :2794-+
[2]   Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets [J].
Argelaguet, Ricard ;
Velten, Britta ;
Arnol, Damien ;
Dietrich, Sascha ;
Zenz, Thorsten ;
Marioni, John C. ;
Buettner, Florian ;
Huber, Wolfgang ;
Stegle, Oliver .
MOLECULAR SYSTEMS BIOLOGY, 2018, 14 (06)
[3]   Epidemiology and prognosis of breast cancer in young women [J].
Assi, Hussein A. ;
Khoury, Katia E. ;
Dbouk, Haifa ;
Khalil, Lana E. ;
Mouhieddine, Tarek H. ;
El Saghir, Nagi S. .
JOURNAL OF THORACIC DISEASE, 2013, 5 :S2-S8
[4]  
Bavafaye H., 2019, CANCER INFORM, V18
[5]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[6]   Human epidermal growth factor receptor-2-positive breast cancer: current management of early, advanced, and recurrent disease [J].
Callahan, Rena ;
Hurvitz, Sara .
CURRENT OPINION IN OBSTETRICS & GYNECOLOGY, 2011, 23 (01) :37-43
[7]   A novel filter feature selection method for paired microarray expression data analysis [J].
Cao, Zhongbo ;
Wang, Yan ;
Sun, Ying ;
Du, Wei ;
Liang, Yanchun .
INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2015, 12 (04) :363-386
[8]   Deep Learning-Based Multi-Omics Integration Robustly Predicts Survival in Liver Cancer [J].
Chaudharyl, Kumardeep ;
Poirionl, Olivier B. ;
Lu, Liangqun ;
Garmire, Lana X. .
CLINICAL CANCER RESEARCH, 2018, 24 (06) :1248-1259
[9]   Genetic Drivers of Epigenetic and Transcriptional Variation in Human Immune Cells [J].
Chen, Lu ;
Ge, Bing ;
Casale, Francesco Paolo ;
Vasquez, Louella ;
Kwan, Tony ;
Garrido-Martin, Diego ;
Watt, Stephen ;
Yan, Ying ;
Kundu, Kousik ;
Ecker, Simone ;
Datta, Avik ;
Richardson, David ;
Burden, Frances ;
Mead, Daniel ;
Mann, Alice L. ;
Maria Fernandez, Jose ;
Rowlston, Sophia ;
Wilder, Steven P. ;
Farrow, Samantha ;
Shao, Xiaojian ;
Lambourne, John J. ;
Redensek, Adriana ;
Albers, Cornelis A. ;
Amstislavskiy, Vyacheslav ;
Ashford, Sofie ;
Berentsen, Kim ;
Bomba, Lorenzo ;
Bourque, Guillaume ;
Bujold, David ;
Busche, Stephan ;
Caron, Maxime ;
Chen, Shu-Huang ;
Cheung, Warren ;
Delaneau, Oliver ;
Dermitzakis, Emmanouil T. ;
Elding, Heather ;
Colgiu, Irina ;
Bagger, Frederik O. ;
Flicek, Paul ;
Habibi, Ehsan ;
Iotchkova, Valentina ;
Janssen-Megens, Eva ;
Kim, Bowon ;
Lehrach, Hans ;
Lowy, Ernesto ;
Mandoli, Amit ;
Matarese, Filomena ;
Maurano, Matthew T. ;
Morris, John A. ;
Pancaldi, Vera .
CELL, 2016, 167 (05) :1398-+
[10]   XBP1 promotes triple-negative breast cancer by controlling the HIF1α pathway [J].
Chen, Xi ;
Iliopoulos, Dimitrios ;
Zhang, Qing ;
Tang, Qianzi ;
Greenblatt, Matthew B. ;
Hatziapostolou, Maria ;
Lim, Elgene ;
Tam, Wai Leong ;
Ni, Min ;
Chen, Yiwen ;
Mai, Junhua ;
Shen, Haifa ;
Hu, Dorothy Z. ;
Adoro, Stanley ;
Hu, Bella ;
Song, Minkyung ;
Tan, Chen ;
Landis, Melissa D. ;
Ferrari, Mauro ;
Shin, Sandra J. ;
Brown, Myles ;
Chang, Jenny C. ;
Liu, X. Shirley ;
Glimcher, Laurie H. .
NATURE, 2014, 508 (7494) :103-+